『壹』 使用python PIL處理圖片。怎麼獲取圖片的像素數據
importimage
importsys
img=image.open("圖片位置")
width=img.size[0]
height=img.size[1]
forwinrange(width):
forhinrange(height):
pixel=img.getpixel(w,h)
printpixel
#width,height是圖片的寬度與長度
#pixel是像素值
『貳』 如何用Python做爬蟲
1)首先你要明白爬蟲怎樣工作。
想像你是一隻蜘蛛,現在你被放到了互聯「網」上。那麼,你需要把所有的網頁都看一遍。怎麼辦呢?沒問題呀,你就隨便從某個地方開始,比如說人民日報的首頁,這個叫initial pages,用$表示吧。
在人民日報的首頁,你看到那個頁面引向的各種鏈接。於是你很開心地從爬到了「國內新聞」那個頁面。太好了,這樣你就已經爬完了倆頁面(首頁和國內新聞)!暫且不用管爬下來的頁面怎麼處理的,你就想像你把這個頁面完完整整抄成了個html放到了你身上。
突然你發現, 在國內新聞這個頁面上,有一個鏈接鏈回「首頁」。作為一隻聰明的蜘蛛,你肯定知道你不用爬回去的吧,因為你已經看過了啊。所以,你需要用你的腦子,存下你已經看過的頁面地址。這樣,每次看到一個可能需要爬的新鏈接,你就先查查你腦子里是不是已經去過這個頁面地址。如果去過,那就別去了。
好的,理論上如果所有的頁面可以從initial page達到的話,那麼可以證明你一定可以爬完所有的網頁。
那麼在python里怎麼實現呢?
很簡單
import Queue
initial_page = "初始化頁"
url_queue = Queue.Queue()
seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直進行直到海枯石爛
if url_queue.size()>0:
current_url = url_queue.get() #拿出隊例中第一個的url
store(current_url) #把這個url代表的網頁存儲好
for next_url in extract_urls(current_url): #提取把這個url里鏈向的url
if next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
寫得已經很偽代碼了。
所有的爬蟲的backbone都在這里,下面分析一下為什麼爬蟲事實上是個非常復雜的東西——搜索引擎公司通常有一整個團隊來維護和開發。
2)效率
如果你直接加工一下上面的代碼直接運行的話,你需要一整年才能爬下整個豆瓣的內容。更別說Google這樣的搜索引擎需要爬下全網的內容了。
問題出在哪呢?需要爬的網頁實在太多太多了,而上面的代碼太慢太慢了。設想全網有N個網站,那麼分析一下判重的復雜度就是N*log(N),因為所有網頁要遍歷一次,而每次判重用set的話需要log(N)的復雜度。OK,OK,我知道python的set實現是hash——不過這樣還是太慢了,至少內存使用效率不高。
通常的判重做法是怎樣呢?Bloom Filter. 簡單講它仍然是一種hash的方法,但是它的特點是,它可以使用固定的內存(不隨url的數量而增長)以O(1)的效率判定url是否已經在set中。可惜天下沒有白吃的午餐,它的唯一問題在於,如果這個url不在set中,BF可以100%確定這個url沒有看過。但是如果這個url在set中,它會告訴你:這個url應該已經出現過,不過我有2%的不確定性。注意這里的不確定性在你分配的內存足夠大的時候,可以變得很小很少。一個簡單的教程:Bloom Filters by Example
注意到這個特點,url如果被看過,那麼可能以小概率重復看一看(沒關系,多看看不會累死)。但是如果沒被看過,一定會被看一下(這個很重要,不然我們就要漏掉一些網頁了!)。 [IMPORTANT: 此段有問題,請暫時略過]
好,現在已經接近處理判重最快的方法了。另外一個瓶頸——你只有一台機器。不管你的帶寬有多大,只要你的機器下載網頁的速度是瓶頸的話,那麼你只有加快這個速度。用一台機子不夠的話——用很多台吧!當然,我們假設每台機子都已經進了最大的效率——使用多線程(python的話,多進程吧)。
3)集群化抓取
爬取豆瓣的時候,我總共用了100多台機器晝夜不停地運行了一個月。想像如果只用一台機子你就得運行100個月了...
那麼,假設你現在有100台機器可以用,怎麼用python實現一個分布式的爬取演算法呢?
我們把這100台中的99台運算能力較小的機器叫作slave,另外一台較大的機器叫作master,那麼回顧上面代碼中的url_queue,如果我們能把這個queue放到這台master機器上,所有的slave都可以通過網路跟master聯通,每當一個slave完成下載一個網頁,就向master請求一個新的網頁來抓取。而每次slave新抓到一個網頁,就把這個網頁上所有的鏈接送到master的queue里去。同樣,bloom filter也放到master上,但是現在master只發送確定沒有被訪問過的url給slave。Bloom Filter放到master的內存里,而被訪問過的url放到運行在master上的Redis里,這樣保證所有操作都是O(1)。(至少平攤是O(1),Redis的訪問效率見:LINSERT – Redis)
考慮如何用python實現:
在各台slave上裝好scrapy,那麼各台機子就變成了一台有抓取能力的slave,在master上裝好Redis和rq用作分布式隊列。
代碼於是寫成
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www.renmingribao.com"
while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
好的,其實你能想到,有人已經給你寫好了你需要的:darkrho/scrapy-redis · GitHub
4)展望及後處理
雖然上面用很多「簡單」,但是真正要實現一個商業規模可用的爬蟲並不是一件容易的事。上面的代碼用來爬一個整體的網站幾乎沒有太大的問題。
但是如果附加上你需要這些後續處理,比如
有效地存儲(資料庫應該怎樣安排)
有效地判重(這里指網頁判重,咱可不想把人民日報和抄襲它的大民日報都爬一遍)
有效地信息抽取(比如怎麼樣抽取出網頁上所有的地址抽取出來,「朝陽區奮進路中華道」),搜索引擎通常不需要存儲所有的信息,比如圖片我存來幹嘛...
及時更新(預測這個網頁多久會更新一次)
如你所想,這里每一個點都可以供很多研究者十數年的研究。雖然如此,
「路漫漫其修遠兮,吾將上下而求索」。
所以,不要問怎麼入門,直接上路就好了:)
『叄』 怎樣使用Python圖像處理
Python圖像處理是一種簡單易學,功能強大的解釋型編程語言,它有簡潔明了的語法,高效率的高層數據結構,能夠簡單而有效地實現面向對象編程,下文進行對Python圖像處理進行說明。
當然,首先要感謝「戀花蝶」,是他的文章「用Python圖像處理 」 幫我堅定了用Python和PIL解決問題的想法,對於PIL的一些介紹和基本操作,可以看看這篇文章。我這里主要是介紹點我在使用過程中的經驗。
PIL可以對圖像的顏色進行轉換,並支持諸如24位彩色、8位灰度圖和二值圖等模式,簡單的轉換可以通過Image.convert(mode)函數完 成,其中mode表示輸出的顏色模式。例如''L''表示灰度,''1''表示二值圖模式等。
但是利用convert函數將灰度圖轉換為二值圖時,是採用固定的閾 值127來實現的,即灰度高於127的像素值為1,而灰度低於127的像素值為0。為了能夠通過自定義的閾值實現灰度圖到二值圖的轉換,就要用到 Image.point函數。
深度剖析Python語法功能
深度說明Python應用程序特點
對Python資料庫進行學習研究
Python開發人員對Python經驗之談
對Python動態類型語言解析
Image.point函數有多種形式,這里只討論Image.point(table, mode),利用該函數可以通過查表的方式實現像素顏色的模式轉換。其中table為顏色轉換過程中的映射表,每個顏色通道應當有256個元素,而 mode表示所輸出的顏色模式,同樣的,''L''表示灰度,''1''表示二值圖模式。
可見,轉換過程的關鍵在於設計映射表,如果只是需要一個簡單的箝位值,可以將table中高於或低於箝位值的元素分別設為1與0。當然,由於這里的table並沒有什麼特殊要求,所以可以通過對元素的特殊設定實現(0, 255)范圍內,任意需要的一對一映射關系。
示例代碼如下:
import Image # load a color image im = Image.open(''fun.jpg'') # convert to grey level image Lim = im.convert(''L'') Lim.save(''fun_Level.jpg'') # setup a converting table with constant threshold threshold = 80 table = [] for i in range(256): if i < threshold: table.append(0) else: table.append(1) # convert to binary image by the table bim = Lim.point(table, ''1'') bim.save(''fun_binary.jpg'')
IT部分通常要完成的任務相當繁重但支撐這些工作的資源卻很少,這已經成為公開的秘密。任何承諾提高編碼效率、降低軟體總成本的IT解決方案都應該進行 周到的考慮。Python圖像處理所具有的一個顯著優勢就是可以在企業的軟體創建和維護階段節約大量資金,而這兩個階段的軟體成本佔到了軟體整個生命周期中總成本 的50%到95%。
Python清晰可讀的語法使得軟體代碼具有異乎尋常的易讀性,甚至對那些不是最初接觸和開發原始項目的程序員都 能具有這樣的強烈感覺。雖然某些程序員反對在Python代碼中大量使用空格。
不過,幾乎人人都承認Python圖像處理的可讀性遠勝於C或者Java,後兩 者都採用了專門的字元標記代碼塊結構、循環、函數以及其他編程結構的開始和結束。提倡Python的人還宣稱,採用這些字元可能會產生顯著的編程風格差 異,使得那些負責維護代碼的人遭遇代碼可讀性方面的困難。轉載
『肆』 python處理圖片數據
目錄
1.機器是如何存儲圖像的?
2.在Python中讀取圖像數據
3.從圖像數據中提取特徵的方法#1:灰度像素值特徵
4.從圖像數據中提取特徵的方法#2:通道的平均像素值
5.從圖像數據中提取特徵的方法#3:提取邊緣
是一張數字8的圖像,仔細觀察就會發現,圖像是由小方格組成的。這些小方格被稱為像素。
但是要注意,人們是以視覺的形式觀察圖像的,可以輕松區分邊緣和顏色,從而識別圖片中的內容。然而機器很難做到這一點,它們以數字的形式存儲圖像。請看下圖:
機器以數字矩陣的形式儲存圖像,矩陣大小取決於任意給定圖像的像素數。
假設圖像的尺寸為180 x 200或n x m,這些尺寸基本上是圖像中的像素數(高x寬)。
這些數字或像素值表示像素的強度或亮度,較小的數字(接近0)表示黑色,較大的數字(接近255)表示白色。通過分析下面的圖像,讀者就會弄懂到目前為止所學到的知識。
下圖的尺寸為22 x 16,讀者可以通過計算像素數來驗證:
圖片源於機器學習應用課程
剛才討論的例子是黑白圖像,如果是生活中更為普遍的彩色呢?你是否認為彩色圖像也以2D矩陣的形式存儲?
彩色圖像通常由多種顏色組成,幾乎所有顏色都可以從三原色(紅色,綠色和藍色)生成。
因此,如果是彩色圖像,則要用到三個矩陣(或通道)——紅、綠、藍。每個矩陣值介於0到255之間,表示該像素的顏色強度。觀察下圖來理解這個概念:
圖片源於機器學習應用課程
左邊有一幅彩色圖像(人類可以看到),而在右邊,紅綠藍三個顏色通道對應三個矩陣,疊加三個通道以形成彩色圖像。
請注意,由於原始矩陣非常大且可視化難度較高,因此這些不是給定圖像的原始像素值。此外,還可以用各種其他的格式來存儲圖像,RGB是最受歡迎的,所以筆者放到這里。讀者可以在此處閱讀更多關於其他流行格式的信息。
用Python讀取圖像數據
下面開始將理論知識付諸實踐。啟動Python並載入圖像以觀察矩陣:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from skimage.io import imread, imshow
image = imread('image_8_original.png', as_gray=True)
imshow(image)
#checking image shape
image.shape, image
(28,28)
矩陣有784個值,而且這只是整個矩陣的一小部分。用一個LIVE編碼窗口,不用離開本文就可以運行上述所有代碼並查看結果。
下面來深入探討本文背後的核心思想,並探索使用像素值作為特徵的各種方法。
方法#1:灰度像素值特徵
從圖像創建特徵最簡單的方法就是將原始的像素用作單獨的特徵。
考慮相同的示例,就是上面那張圖(數字『8』),圖像尺寸為28×28。
能猜出這張圖片的特徵數量嗎?答案是與像素數相同!也就是有784個。
那麼問題來了,如何安排這784個像素作為特徵呢?這樣,可以簡單地依次追加每個像素值從而生成特徵向量。如下圖所示:
下面來用Python繪制圖像,並為該圖像創建這些特徵:
image = imread('puppy.jpeg', as_gray=True)
image.shape, imshow(image)
(650,450)
該圖像尺寸為650×450,因此特徵數量應為297,000。可以使用NumPy中的reshape函數生成,在其中指定圖像尺寸:
#pixel features
features = np.reshape(image, (660*450))
features.shape, features
(297000,)
array([0.96470588, 0.96470588, 0.96470588, ..., 0.96862745, 0.96470588,
0.96470588])
這里就得到了特徵——長度為297,000的一維數組。很簡單吧?在實時編碼窗口中嘗試使用此方法提取特徵。
但結果只有一個通道或灰度圖像,對於彩色圖像是否也可以這樣呢?來看看吧!
方法#2:通道的平均像素值
在讀取上一節中的圖像時,設置了參數『as_gray = True』,因此在圖像中只有一個通道,可以輕松附加像素值。下面刪除參數並再次載入圖像:
image = imread('puppy.jpeg')
image.shape
(660, 450, 3)
這次,圖像尺寸為(660,450,3),其中3為通道數量。可以像之前一樣繼續創建特徵,此時特徵數量將是660*450*3 = 891,000。
或者,可以使用另一種方法:
生成一個新矩陣,這個矩陣具有來自三個通道的像素平均值,而不是分別使用三個通道中的像素值。
下圖可以讓讀者更清楚地了解這一思路:
這樣一來,特徵數量保持不變,並且還能考慮來自圖像全部三個通道的像素值。
image = imread('puppy.jpeg')
feature_matrix = np.zeros((660,450))
feature_matrix.shape
(660, 450)
現有一個尺寸為(660×450×3)的三維矩陣,其中660為高度,450為寬度,3是通道數。為獲取平均像素值,要使用for循環:
for i in range(0,iimage.shape[0]):
for j in range(0,image.shape[1]):
feature_matrix[i][j] = ((int(image[i,j,0]) + int(image[i,j,1]) + int(image[i,j,2]))/3)
新矩陣具有相同的高度和寬度,但只有一個通道。現在,可以按照與上一節相同的步驟進行操作。依次附加像素值以獲得一維數組:
features = np.reshape(feature_matrix, (660*450))
features.shape
(297000,)
方法#3:提取邊緣特徵
請思考,在下圖中,如何識別其中存在的對象:
識別出圖中的對象很容易——狗、汽車、還有貓,那麼在區分的時候要考慮哪些特徵呢?形狀是一個重要因素,其次是顏色,或者大小。如果機器也能像這樣識別形狀會怎麼樣?
類似的想法是提取邊緣作為特徵並將其作為模型的輸入。稍微考慮一下,要如何識別圖像中的邊緣呢?邊緣一般都是顏色急劇變化的地方,請看下圖:
筆者在這里突出了兩個邊緣。這兩處邊緣之所以可以被識別是因為在圖中,可以分別看到顏色從白色變為棕色,或者由棕色變為黑色。如你所知,圖像以數字的形式表示,因此就要尋找哪些像素值發生了劇烈變化。
假設圖像矩陣如下:
圖片源於機器學習應用課程
該像素兩側的像素值差異很大,於是可以得出結論,該像素處存在顯著的轉變,因此其為邊緣。現在問題又來了,是否一定要手動執行此步驟?
當然不!有各種可用於突出顯示圖像邊緣的內核,剛才討論的方法也可以使用Prewitt內核(在x方向上)來實現。以下是Prewitt內核:
獲取所選像素周圍的值,並將其與所選內核(Prewitt內核)相乘,然後可以添加結果值以獲得最終值。由於±1已經分別存在於兩列之中,因此添加這些值就相當於獲取差異。
還有其他各種內核,下面是四種最常用的內核:
圖片源於機器學習應用課程
現在回到筆記本,為同一圖像生成邊緣特徵:
#importing the required libraries
import numpy as np
from skimage.io import imread, imshow
from skimage.filters import prewitt_h,prewitt_v
import matplotlib.pyplot as plt
%matplotlib inline
#reading the image
image = imread('puppy.jpeg',as_gray=True)
#calculating horizontal edges using prewitt kernel
edges_prewitt_horizontal = prewitt_h(image)
#calculating vertical edges using prewitt kernel
edges_prewitt_vertical = prewitt_v(image)
imshow(edges_prewitt_vertical, cmap='gray')
『伍』 Python如何圖像識別
Python圖片文本識別使用的工具是PIL和pytesser。因為他們使用到很多的python庫文件,為了避免一個個工具的安裝,建議使用pythonxy
pytesser是OCR開源項目的一個模塊,在Python中導入這個模塊即可將圖片中的文字轉換成文本。pytesser調用了tesseract。當在Python中調用pytesser模塊時,pytesser又用tesseract識別圖片中的文字。pytesser的使用步驟如下:
首先,安裝Python2.7版本,這個版本比較穩定,建議使用這個版本。
其次,安裝pythoncv。
然後,安裝PIL工具,pytesser的使用需要PIL庫的支持。
接著下載pytesser
最後,將pytesser解壓,這個是免安裝的,可以將解壓後的文件cut到Python安裝目錄的Lib\site-packages下直接使用,比如我的安裝目錄是:C:\Python27\Lib\site-packages,同時把這個目錄添加到環境變數之中。
完成以上步驟之後,就可以編寫圖片文本識別的Python腳本了。參考腳本如下:
from pytesser import *
import ImageEnhance
image = Image.open('D:\\workspace\\python\\5.png')
#使用ImageEnhance可以增強圖片的識別率
enhancer = ImageEnhance.Contrast(image)
image_enhancer = enhancer.enhance(4)
print image_to_string(image_enhancer)
tesseract是谷歌的一個對圖片進行識別的開源框架,免費使用,現在已經支持中文,而且識別率非常高,這里簡要來個helloworld級別的認識
下載之後進行安裝,不再演示。
在tesseract目錄下,有個tesseract.exe文件,主要調用這個執行文件,用cmd運行到這個目錄下,在這個目錄下同時放置一張需要識別的圖片,這里是123.jpg
然後運行:tesseract 123.jpg result
會把123.jpg自動識別並轉換為txt文件到result.txt
但是此時中文識別不好
然後找到tessdata目錄,把eng.traineddata替換為chi_sim.traineddata,並且把chi_sim.traineddata重命名為eng.traineddata
ok,現在中文識別基本達到90%以上了
『陸』 怎麼樣在Python編程中使用Pillow來處理圖像
安裝
剛接觸Pillow的朋友先來看一下Pillow的安裝方法,在這里我們以Mac OS環境為例: (1)、使用 pip 安裝 Python 庫。pip 是 Python 的包管理工具,安裝後就可以直接在命令行一站式地安裝/管理各種庫了(pip 文檔)。
$ wget http://pypi.python.org/packages/source/p/pip/pip-0.7.2.tar.gz$ tar xzf pip-0.7.2.tar.gz$ cd pip-0.7.2$ python setup.py install
(2)、使用 pip 下載獲取 Pillow:
$ pip install pillow
(3)、安裝過程中命令行出現錯誤提示:」error: command 『clang' failed with exit status
1」。上網查閱,發現需要通過 Xcode 更新 Command Line Tool。於是打開
Xcode->Preferences->Downloads-Components選項卡。咦?竟然沒了 Command Line
Tools。再查,發現 Xcode 5 以上現在需要用命令行安裝:
$ xcode-select —install
系統會彈出安裝命令行工具的提示,點擊安裝即可。
此時再 pip install pillow,就安裝成功了。
pip freeze 命令查看已經安裝的 Python 包,Pillow 已經乖乖躺那兒了。
好了,下面開始進入教程~
Image類
Pillow中最重要的類就是Image,該類存在於同名的模塊中。可以通過以下幾種方式實例化:從文件中讀取圖片,處理其他圖片得到,或者直接創建一個圖片。
使用Image模塊中的open函數打開一張圖片:
>>> from PIL import Image>>> im = Image.open("lena.ppm")
如果打開成功,返回一個Image對象,可以通過對象屬性檢查文件內容
>>> from __future__ import print_function>>> print(im.format, im.size, im.mode)
PPM (512, 512) RGB
format屬性定義了圖像的格式,如果圖像不是從文件打開的,那麼該屬性值為None;size屬性是一個tuple,表示圖像的寬和高(單位為像素);mode屬性為表示圖像的模式,常用的模式為:L為灰度圖,RGB為真彩色,CMYK為pre-press圖像。
如果文件不能打開,則拋出IOError異常。
當有一個Image對象時,可以用Image類的各個方法進行處理和操作圖像,例如顯示圖片:
>>> im.show()
ps:標准版本的show()方法不是很有效率,因為它先將圖像保存為一個臨時文件,然後使用xv進行顯示。如果沒有安裝xv,該函數甚至不能工作。但是該方法非常便於debug和test。(windows中應該調用默認圖片查看器打開)
讀寫圖片
Pillow庫支持相當多的圖片格式。直接使用Image模塊中的open()函數讀取圖片,而不必先處理圖片的格式,Pillow庫自動根據文件決定格式。
Image模塊中的save()函數可以保存圖片,除非你指定文件格式,那麼文件名中的擴展名用來指定文件格式。
圖片轉成jpg格式
from __future__ import print_functionimport os, sysfrom PIL import Imagefor infile in sys.argv[1:]: f, e = os.path.splitext(infile) outfile = f + ".jpg" if infile != outfile: try: Image.open(infile).save(outfile) except IOError: print("cannot convert", infile)
save函數的第二個參數可以用來指定圖片格式,如果文件名中沒有給出一個標準的圖像格式,那麼第二個參數是必須的。
創建縮略圖
from __future__ import print_functionimport os, sysfrom PIL import Imagesize = (128, 128)for infile in sys.argv[1:]: outfile = os.path.splitext(infile)[0] + ".thumbnail" if infile != outfile: try: im = Image.open(infile) im.thumbnail(size) im.save(outfile, "JPEG") except IOError: print("cannot create thumbnail for", infile)
必須指出的是除非必須,Pillow不會解碼或raster數據。當你打開一個文件,Pillow通過文件頭確定文件格式,大小,mode等數據,餘下數據直到需要時才處理。
這意味著打開文件非常快,與文件大小和壓縮格式無關。下面的程序用來快速確定圖片屬性:
確定圖片屬性
from __future__ import print_functionimport sysfrom PIL import Imagefor infile in sys.argv[1:]: try: with Image.open(infile) as im: print(infile, im.format, "%dx%d" % im.size, im.mode) except IOError: pass
裁剪、粘貼、與合並圖片
Image類包含還多操作圖片區域的方法。如crop()方法可以從圖片中提取一個子矩形
從圖片中復制子圖像
box = im.() #直接復制圖像box = (100, 100, 400, 400)region = im.crop(box)
區域由4-tuple決定,該tuple中信息為(left, upper, right, lower)。 Pillow左邊系統的原點(0,0)為圖片的左上角。坐標中的數字單位為像素點,所以上例中截取的圖片大小為300*300像素^2。
處理子圖,粘貼回原圖
region = region.transpose(Image.ROTATE_180)im.paste(region, box)
將子圖paste回原圖時,子圖的region必須和給定box的region吻合。該region不能超過原圖。而原圖和region的mode不需要匹配,Pillow會自動處理。
另一個例子
Rolling an imagedef roll(image, delta): "Roll an image sideways" image = image.() #復制圖像 xsize, ysize = image.size delta = delta % xsize if delta == 0: return image part1 = image.crop((0, 0, delta, ysize)) part2 = image.crop((delta, 0, xsize, ysize)) image.paste(part2, (0, 0, xsize-delta, ysize)) image.paste(part1, (xsize-delta, 0, xsize, ysize)) return image
分離和合並通道
r, g, b = im.split()im = Image.merge("RGB", (b, g, r))
對於單通道圖片,split()返回圖像本身。為了處理單通道圖片,必須先將圖片轉成RGB。
幾何變換
Image類有resize()、rotate()和transpose()、transform()方法進行幾何變換。
簡單幾何變換
out = im.resize((128, 128))out = im.rotate(45) # 順時針角度表示
置換圖像
out = im.transpose(Image.FLIP_LEFT_RIGHT)out = im.transpose(Image.FLIP_TOP_BOTTOM)out = im.transpose(Image.ROTATE_90)out = im.transpose(Image.ROTATE_180)out = im.transpose(Image.ROTATE_270)
transpose()和象的rotate()沒有性能差別。
更通用的圖像變換方法可以使用transform()
模式轉換
convert()方法
模式轉換
im = Image.open('lena.ppm').convert('L')
圖像增強
Filter ImageFilter模塊包含很多預定義的增強filters,通過filter()方法使用
應用filters
from PIL import ImageFilterout = im.filter(ImageFilter.DETAIL)
像素點處理
point()方法通過一個函數或者查詢表對圖像中的像素點進行處理(例如對比度操作)。
像素點變換
# multiply each pixel by 1.2out = im.point(lambda i: i * 1.2)
上述方法可以利用簡單的表達式進行圖像處理,通過組合point()和paste()還能選擇性地處理圖片的某一區域。
處理單獨通道
# split the image into indivial bandssource = im.split()R, G, B = 0, 1, 2# select regions where red is less than 100mask = source[R].point(lambda i: i < 100 and 255)# process the green bandout = source[G].point(lambda i: i * 0.7)# paste the processed band back, but only where red was < 100source[G].paste(out, None, mask)# build a new multiband imageim = Image.merge(im.mode, source)
注意到創建mask的語句:
mask = source[R].point(lambda i: i < 100 and 255)
該句可以用下句表示
imout = im.point(lambda i: expression and 255)
如果expression為假則返回expression的值為0(因為and語句已經可以得出結果了),否則返回255。(mask參數用法:當為0時,保留當前值,255為使用paste進來的值,中間則用於transparency效果)
高級圖片增強
對其他高級圖片增強,應該使用ImageEnhance模塊 。一旦有一個Image對象,應用ImageEnhance對象就能快速地進行設置。 可以使用以下方法調整對比度、亮度、色平衡和銳利度。
圖像增強
from PIL import ImageEnhanceenh = ImageEnhance.Contrast(im)enh.enhance(1.3).show("30% more contrast")
動態圖
Pillow支持一些動態圖片的格式如FLI/FLC,GIF和其他一些處於實驗階段的格式。TIFF文件同樣可以包含數幀圖像。
當讀取動態圖時,PIL自動讀取動態圖的第一幀,可以使用seek和tell方法讀取不同鄭
from PIL import Imageim = Image.open("animation.gif")im.seek(1) # skip to the second frametry: while 1: im.seek(im.tell()+1) # do something to imexcept EOFError: pass # end of sequence
當讀取到最後一幀時,Pillow拋出EOFError異常。
當前版本只允許seek到下一鄭為了倒回之前,必須重新打開文件。
或者可以使用下述迭代器類
動態圖迭代器類
class ImageSequence: def __init__(self, im): self.im = im def __getitem__(self, ix): try: if ix: self.im.seek(ix) return self.im except EOFError: raise IndexError # end of sequencefor frame in ImageSequence(im): # ...do something to frame...Postscript Printing
Pillow允許通過Postscript Printer在圖片上添加images、text、graphics。
Drawing Postscriptfrom PIL import Imagefrom PIL import PSDrawim = Image.open("lena.ppm")title = "lena"box = (1*72, 2*72, 7*72, 10*72) # in pointsps = PSDraw.PSDraw() # default is sys.stdoutps.begin_document(title)# draw the image (75 dpi)ps.image(box, im, 75)ps.rectangle(box)# draw centered titleps.setfont("HelveticaNarrow-Bold", 36)w, h, b = ps.textsize(title)ps.text((4*72-w/2, 1*72-h), title)ps.end_document()
更多讀取圖片方法
之前說到Image模塊的open()函數已經足夠日常使用。該函數的參數也可以是一個文件對象。
從string中讀取
import StringIOim = Image.open(StringIO.StringIO(buffer))
從tar文件中讀取
from PIL import TarIOfp = TarIO.TarIO("Imaging.tar", "Imaging/test/lena.ppm")im = Image.open(fp)
草稿模式
draft()方法允許在不讀取文件內容的情況下盡可能(可能不會完全等於給定的參數)地將圖片轉成給定模式和大小,這在生成縮略圖的時候非常有效(速度要求比質量高的場合)。
draft模式
from __future__ import print_functionim = Image.open(file)print("original =", im.mode, im.size)im.draft("L", (100, 100))print("draft =", im.mode, im.size)
『柒』 常用的十大python圖像處理工具
原文標題:10 Python image manipulation tools.
作者 | Parul Pandey
翻譯 | 安其羅喬爾、JimmyHua
今天,在我們的世界裡充滿了數據,圖像成為構成這些數據的重要組成部分。但無論是用於何種用途,這些圖像都需要進行處理。圖像處理就是分析和處理數字圖像的過程,主要旨在提高其質量或從中提取一些信息,然後可以將其用於某種用途。
圖像處理中的常見任務包括顯示圖像,基本操作如裁剪、翻轉、旋轉等,圖像分割,分類和特徵提取,圖像恢復和圖像識別。Python成為這種圖像處理任務是一個恰當選擇,這是因為它作為一種科學編程語言正在日益普及,並且在其生態系統中免費提供許多最先進的圖像處理工具供大家使用。
讓我們看一下可以用於圖像處理任務中的常用 Python 庫有哪些吧。
1.scikit-image
scikit-image是一個開源的Python包,適用於numpy數組。它實現了用於研究,教育和工業應用的演算法和實用工具。即使是那些剛接觸Python生態系統的人,它也是一個相當簡單直接的庫。此代碼是由活躍的志願者社區編寫的,具有高質量和同行評審的性質。
資源
文檔里記錄了豐富的例子和實際用例,閱讀下面的文檔:
http://scikit-image.org/docs/stable/user_guide.html
用法
該包作為skimage導入,大多數功能都在子模塊中找的到。下面列舉一些skimage的例子:
圖像過濾
使用match_template函數進行模板匹配
你可以通過此處查看圖庫找到更多示例。
2. Numpy
Numpy是Python編程的核心庫之一,並為數組提供支持。圖像本質上是包含數據點像素的標准Numpy數組。因此,我們可以通過使用基本的NumPy操作,例如切片、掩膜和花式索引,來修改圖像的像素值。可以使用skimage載入圖像並使用matplotlib顯示圖像。
資源
Numpy的官方文檔頁面提供了完整的資源和文檔列表:
http://www.numpy.org/
用法
使用Numpy來掩膜圖像.
3.Scipy
scipy是Python的另一個類似Numpy的核心科學模塊,可用於基本的圖像操作和處理任務。特別是子模塊scipy.ndimage,提供了在n維NumPy數組上操作的函數。該包目前包括線性和非線性濾波,二值形態學,B樣條插值和對象測量等功能函數。
資源
有關scipy.ndimage包提供的完整功能列表,請參閱下面的鏈接:
https://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html#correlation-and-convolution
用法
使用SciPy通過高斯濾波器進行模糊:
4. PIL/ Pillow
PIL( Python圖像庫 )是Python編程語言的一個免費庫,它支持打開、操作和保存許多不同的文件格式的圖像。然而, 隨著2009年的最後一次發布,它的開發停滯不前。但幸運的是還有有Pillow,一個PIL積極開發的且更容易安裝的分支,它能運行在所有主要的操作系統,並支持Python3。這個庫包含了基本的圖像處理功能,包括點運算、使用一組內置卷積核的濾波和色彩空間的轉換。
資源
文檔中有安裝說明,以及涵蓋庫的每個模塊的示例:
https://pillow.readthedocs.io/en/3.1.x/index.html
用法
在 Pillow 中使用 ImageFilter 增強圖像:
5. OpenCV-Python
OpenCV( 開源計算機視覺庫 )是計算機視覺應用中應用最廣泛的庫之一 。OpenCV-Python 是OpenCV的python版API。OpenCV-Python的優點不只有高效,這源於它的內部組成是用C/C++編寫的,而且它還容易編寫和部署(因為前端是用Python包裝的)。這使得它成為執行計算密集型計算機視覺程序的一個很好的選擇。
資源
OpenCV-Python-Guide指南可以讓你使用OpenCV-Python更容易:
https://github.com/abidrahmank/OpenCV2-Python-Tutorials
用法
下面是一個例子,展示了OpenCV-Python使用金字塔方法創建一個名為「Orapple」的新水果圖像融合的功能。
6. SimpleCV
SimpleCV 也是一個用於構建計算機視覺應用程序的開源框架。有了它,你就可以訪問幾個高性能的計算機視覺庫,如OpenCV,而且不需要先學習了解位深度、文件格式、顏色空間等。
它的學習曲線大大小於OpenCV,正如它們的口號所說「計算機視覺變得簡單」。一些支持SimpleCV的觀點有:
即使是初學者也可以編寫簡單的機器視覺測試攝像機、視頻文件、圖像和視頻流都是可互操作的資源
官方文檔非常容易理解,而且有大量的例子和使用案例去學習:
https://simplecv.readthedocs.io/en/latest/
用法
7. Mahotas
Mahotas 是另一個計算機視覺和圖像處理的Python庫。它包括了傳統的圖像處理功能例如濾波和形態學操作以及更現代的計算機視覺功能用於特徵計算,包括興趣點檢測和局部描述符。該介面是Python語言,適合於快速開發,但是演算法是用C語言實現的,並根據速度進行了調優。Mahotas庫速度快,代碼簡潔,甚至具有最小的依賴性。通過原文閱讀它們的官方論文以獲得更多的了解。
資源
文檔包括安裝指導,例子,以及一些教程,可以更好的幫助你開始使用mahotas。
https://mahotas.readthedocs.io/en/latest/install.html
用法
Mahotas庫依賴於使用簡單的代碼來完成任務。關於『Finding Wally』的問題,Mahotas做的很好並且代碼量很少。下面是源碼:
https://mahotas.readthedocs.io/en/latest/wally.html
8. SimpleITK
ITK 或者 Insight Segmentation and Registration Toolkit是一個開源的跨平台系統,為開發人員提供了一套廣泛的圖像分析軟體工具 。其中, SimpleITK是建立在ITK之上的簡化層,旨在促進其在快速原型設計、教育、解釋語言中的應用。SimpleITK 是一個圖像分析工具包,包含大量支持一般過濾操作、圖像分割和匹配的組件。SimpleITK本身是用C++寫的,但是對於包括Python以內的大部分編程語言都是可用的。
資源
大量的Jupyter Notebooks 表明了SimpleITK在教育和研究領域已經被使用。Notebook展示了用Python和R編程語言使用SimpleITK來進行互動式圖像分析。
http://insightsoftwareconsortium.github.io/SimpleITK-Notebooks/
用法
下面的動畫是用SimpleITK和Python創建的剛性CT/MR匹配過程的可視化 。點擊此處可查看源碼!
9. pgmagick
pgmagick是GraphicsMagick庫的一個基於python的包裝。 GraphicsMagick圖像處理系統有時被稱為圖像處理的瑞士軍刀。它提供了一個具有強大且高效的工具和庫集合,支持以88種主要格式(包括重要格式,如DPX、GIF、JPEG、JPEG-2000、PNG、PDF、PNM和TIFF)讀取、寫入和操作圖像。
資源
有一個專門用於PgMagick的Github庫 ,其中包含安裝和需求說明。還有關於這個的一個詳細的用戶指導:
https://github.com/hhatto/pgmagick
用法
使用pgmagick可以進行的圖像處理活動很少,比如:
圖像縮放
邊緣提取
10. Pycairo
Pycairo是圖像處理庫cairo的一組Python捆綁。Cairo是一個用於繪制矢量圖形的2D圖形庫。矢量圖形很有趣,因為它們在調整大小或轉換時不會失去清晰度 。Pycairo是cairo的一組綁定,可用於從Python調用cairo命令。
資源
Pycairo的GitHub庫是一個很好的資源,有關於安裝和使用的詳細說明。還有一個入門指南,其中有一個關於Pycairo的簡短教程。
庫:https://github.com/pygobject/pycairo指南:https://pycairo.readthedocs.io/en/latest/tutorial.html用法
使用Pycairo繪制線條、基本形狀和徑向梯度:
總結
有一些有用且免費的Python圖像處理庫可以使用,有的是眾所周知的,有的可能對你來說是新的,試著多去了解它們。
『捌』 python圖像處理初學者求助
Pillow是Python里的圖像處理庫(PIL:Python Image Library),提供了了廣泛的文件格式支持,強大的圖像處理能力,主要包括圖像儲存、圖像顯示、格式轉換以及基本的圖像處理操作等。
1)使用 Image 類
PIL最重要的類是 Image class, 你可以通過多種方法創建這個類的實例;你可以從文件載入圖像,或者處理其他圖像, 或者從 scratch 創建。
要從文件載入圖像,可以使用open( )函數,在Image模塊中:
1
2
>>> from PIL import Image
>>> im = Image.open("E:/photoshop/1.jpg")
載入成功後,將返回一個Image對象,可以通過使用示例屬性查看文件內容:
1
2
3
>>> print(im.format, im.size, im.mode)
('JPEG', (600, 351), 'RGB')
>>>
format 這個屬性標識了圖像來源。如果圖像不是從文件讀取它的值就是None。size屬性是一個二元tuple,包含width和height(寬度和高度,單位都是px)。 mode 屬性定義了圖像bands的數量和名稱,以及像素類型和深度。常見的modes 有 「L」 (luminance) 表示灰度圖像, 「RGB」 表示真彩色圖像, and 「CMYK」 表示出版圖像。
如果文件打開錯誤,返回 IOError 錯誤。
只要你有了 Image 類的實例,你就可以通過類的方法處理圖像。比如,下列方法可以顯示圖像:
1
im.show()
2)讀寫圖像
PIL 模塊支持大量圖片格式。使用在 Image 模塊的 open() 函數從磁碟讀取文件。你不需要知道文件格式就能打開它,這個庫能夠根據文件內容自動確定文件格式。要保存文件,使用 Image 類的 save() 方法。保存文件的時候文件名變得重要了。除非你指定格式,否則這個庫將會以文件名的擴展名作為格式保存。
載入文件,並轉化為png格式:
1
2
3
4
5
6
7
8
9
10
11
12
13
"Python Image Library Test"
from PIL import Image
import os
import sys
for infile in sys.argv[1:]:
f,e = os.path.splitext(infile)
outfile = f +".png"
if infile != outfile:
try:
Image.open(infile).save(outfile)
except IOError:
print("Cannot convert", infile)
save() 方法的第二個參數可以指定文件格式。
3)創建縮略圖
縮略圖是網路開發或圖像軟體預覽常用的一種基本技術,使用Python的Pillow圖像庫可以很方便的建立縮略圖,如下:
1
2
3
4
5
6
7
# create thumbnail
size = (128,128)
for infile in glob.glob("E:/photoshop/*.jpg"):
f, ext = os.path.splitext(infile)
img = Image.open(infile)
img.thumbnail(size,Image.ANTIALIAS)
img.save(f+".thumbnail","JPEG")
上段代碼對photoshop下的jpg圖像文件全部創建縮略圖,並保存,glob模塊是一種智能化的文件名匹配技術,在批圖像處理中經常會用到。
注意:Pillow庫不會直接解碼或者載入圖像柵格數據。當你打開一個文件,只會讀取文件頭信息用來確定格式,顏色模式,大小等等,文件的剩餘部分不會主動處理。這意味著打開一個圖像文件的操作十分快速,跟圖片大小和壓縮方式無關。
4)圖像的剪切、粘貼與合並操作
Image 類包含的方法允許你操作圖像部分選區,PIL.Image.Image.crop 方法獲取圖像的一個子矩形選區,如:
1
2
3
4
# crop, paste and merge
im = Image.open("E:/photoshop/lena.jpg")
box = (100,100,300,300)
region = im.crop(box)
矩形選區有一個4元元組定義,分別表示左、上、右、下的坐標。這個庫以左上角為坐標原點,單位是px,所以上訴代碼復制了一個 200×200 pixels 的矩形選區。這個選區現在可以被處理並且粘貼到原圖。
1
2
region = region.transpose(Image.ROTATE_180)
im.paste(region, box)
當你粘貼矩形選區的時候必須保證尺寸一致。此外,矩形選區不能在圖像外。然而你不必保證矩形選區和原圖的顏色模式一致,因為矩形選區會被自動轉換顏色。
5)分離和合並顏色通道
對於多通道圖像,有時候在處理時希望能夠分別對每個通道處理,處理完成後重新合成多通道,在Pillow中,很簡單,如下:
1
2
r,g,b = im.split()
im = Image.merge("RGB", (r,g,b))
對於split( )函數,如果是單通道的,則返回其本身,否則,返回各個通道。
6)幾何變換
對圖像進行幾何變換是一種基本處理,在Pillow中包括resize( )和rotate( ),如用法如下:
1
2
out = im.resize((128,128))
out = im.rotate(45) # degree conter-clockwise
其中,resize( )函數的參數是一個新圖像大小的元祖,而rotate( )則需要輸入順時針的旋轉角度。在Pillow中,對於一些常見的旋轉作了專門的定義:
1
2
3
4
5
out = im.transpose(Image.FLIP_LEFT_RIGHT)
out = im.transpose(Image.FLIP_TOP_BOTTOM)
out = im.transpose(Image.ROTATE_90)
out = im.transpose(Image.ROTATE_180)
out = im.transpose(Image.ROTATE_270)
7)顏色空間變換
在處理圖像時,根據需要進行顏色空間的轉換,如將彩色轉換為灰度:
1
2
cmyk = im.convert("CMYK")
gray = im.convert("L")
8)圖像濾波