『壹』 請教一個問題,怎麼提高 python 爬蟲的爬取效率
將網頁page source 保存到資料庫(mongodb)中,每次取得新的page source 和資料庫中的page source 的hash 值是不是想等,如果不等表示有更新。
這個判斷有了,爬蟲爬取時間策略就好辦了。
『貳』 請教一個問題,怎麼提高 python 爬蟲的爬取效率
很多爬蟲工作者都遇到過抓取非常慢的問題,尤其是需要採集大量數據的情況下。那麼如何提高爬蟲採集效率就十分關鍵,一塊了解如何提高爬蟲採集效率問題。
1.盡可能減少網站訪問次數
單次爬蟲的主要把時間消耗在網路請求等待響應上面,所以能減少網站訪問就減少網站訪問,既減少自身的工作量,也減輕網站的壓力,還降低被封的風險。
第一步要做的就是流程優化,盡量精簡流程,避免在多個頁面重復獲取。
隨後去重,同樣是十分重要的手段,一般根據url或者id進行唯一性判別,爬過的就不再繼續爬了。
2.分布式爬蟲
即便把各種法子都用盡了,單機單位時間內能爬的網頁數仍是有限的,面對大量的網頁頁面隊列,可計算的時間仍是很長,這種情況下就必須要用機器換時間了,這就是分布式爬蟲。
第一步,分布式並不是爬蟲的本質,也並不是必須的,對於互相獨立、不存在通信的任務就可手動對任務分割,隨後在多個機器上各自執行,減少每台機器的工作量,費時就會成倍減少。
例如有200W個網頁頁面待爬,可以用5台機器各自爬互不重復的40W個網頁頁面,相對來說單機費時就縮短了5倍。
可是如果存在著需要通信的狀況,例如一個變動的待爬隊列,每爬一次這個隊列就會發生變化,即便分割任務也就有交叉重復,因為各個機器在程序運行時的待爬隊列都不一樣了——這種情況下只能用分布式,一個Master存儲隊列,其他多個Slave各自來取,這樣共享一個隊列,取的情況下互斥也不會重復爬取。IPIDEA提供高匿穩定的IP同時更注重用戶隱私的保護,保障用戶的信息安全。含有240+國家地區的ip,支持API批量使用,支持多線程高並發使用。
『叄』 請教一個問題,怎麼提高 python 爬蟲的爬取效率
多個爬蟲+隊列( redis )
協程與多進程並不沖突
消息隊列
使用大量的代理 ip
使用 requests.Session 復用連接應該能稍微快一點.
『肆』 當Python爬蟲遇到網站防爬機制時如何處理
繞過反爬蟲機制的方法
1、模擬正常用戶。反爬蟲機制還會利用檢測用戶的行為來判斷,例如Cookies來判斷是不是有效的用戶。
2、動態頁面限制。有時候發現抓取的信息內容空白,這是因為這個網站的信息是通過用戶的XHR動態返回內容信息。解決這種問題就要爬蟲程序對網站進行分析,找到內容信息並抓取,才能獲取內容。
3、降低IP訪問頻率。有時候平台為了阻止頻繁訪問,會設置IP在規定時間內的訪問次數,超過次數就會禁止訪問。所以繞過反爬蟲機制可以降低爬蟲的訪問頻率,還可以用IPIDEA代理IP換IP解決限制。
『伍』 Python爬蟲如何避免爬取網站訪問過於頻繁
一. 關於爬蟲
爬蟲,是一種按照一定的規則自動地抓取互聯網信息的程序。本質是利用程序獲取對我們有利的數據。
反爬蟲,從不是將爬蟲完全杜絕;而是想辦法將爬蟲的訪問量限制在一個可接納的范圍,不要讓它過於頻繁。
二. 提高爬蟲效率的方法
協程。採用協程,讓多個爬蟲一起工作,可以大幅度提高效率。
多進程。使用CPU的多個核,使用幾個核就能提高幾倍。
多線程。將任務分成多個,並發(交替)的執行。
分布式爬蟲。讓多個設備去跑同一個項目,效率也能大幅提升。
打包技術。可以將python文件打包成可執行的exe文件,讓其在後台執行即可。
其他。比如,使用網速好的網路等等。
三. 反爬蟲的措施
限制請求頭,即request header。解決方法:我們可以填寫user-agent聲明自己的身份,有時還要去填寫origin和referer聲明請求的來源。
限制登錄,即不登錄就不能訪問。解決方法:我們可以使用cookies和session的知識去模擬登錄。
復雜的交互,比如設置「驗證碼」來阻攔登錄。這就比較難做,解決方法1:我們用Selenium去手動輸入驗證碼;方法2:我們用一些圖像處理的庫自動識別驗證碼(tesserocr/pytesserart/pillow)。
ip限制。如果這個IP地址,爬取網站頻次太高,那麼伺服器就會暫時封掉來自這個IP地址的請求。 解決方法:使用time.sleep()來對爬蟲的速度進行限制,建立IP代理池或者使用IPIDEA避免IP被封禁。
『陸』 如何使用python解決網站的反爬蟲
1、從用戶請求的Headers反爬蟲是最常見的反爬蟲策略。
偽裝header。很多網站都會對Headers的User-Agent進行檢測,還有一部分網站會對Referer進行檢測(一些資源網站的防盜鏈就是檢測Referer)。如果遇到了這類反爬蟲機制,可以直接在爬蟲中添加Headers,將瀏覽器的User-Agent復制到爬蟲的Headers中;或者將Referer值修改為目標網站域名[評論:往往容易被忽略,通過對請求的抓包分析,確定referer,在程序中模擬訪問請求頭中添加]。對於檢測Headers的反爬蟲,在爬蟲中修改或者添加Headers就能很好的繞過。
2、基於用戶行為反爬蟲
還有一部分網站是通過檢測用戶行為,例如同一IP短時間內多次訪問同一頁面,或者同一賬戶短時間內多次進行相同操作。[這種防爬,需要有足夠多的ip來應對]
(1)、大多數網站都是前一種情況,對於這種情況,使用IP代理就可以解決。可以專門寫一個爬蟲,爬取網上公開的代理ip,檢測後全部保存起來。有了大量代理ip後可以每請求幾次更換一個ip,這在requests或者urllib中很容易做到,這樣就能很容易的繞過第一種反爬蟲。
編寫爬蟲代理:
步驟:
1.參數是一個字典{'類型':'代理ip:埠號'}
proxy_support=urllib.request.ProxyHandler({})
2.定製、創建一個opener
opener=urllib.request.build_opener(proxy_support)
3a.安裝opener
urllib.request.install_opener(opener)
3b.調用opener
opener.open(url)
用大量代理隨機請求目標網站,應對反爬蟲
『柒』 請教一個問題,怎麼提高 python 爬蟲的爬取效率
考慮用多進程+分布在不同機房的集群。
理由如下:
如果單進程,則瓶頸多出在CPU上。
多進程的話可以高效利用CPU。但是其實多數情況是在網路,所以說更好的解決辦法是用多個機房的多台機器同時跑多進程的爬蟲,這樣減少網路阻塞。
實現的話,用scrapy+rq-queue然後用redis來作隊列就好。
用這個方法爬過douban的幾千萬個頁面