Ⅰ 用python爬蟲的基本步驟
用python爬蟲是使用一個專業的爬蟲框架scrapy來爬取的,大概步驟為定義item類,開發spider類(這一步是核心),開發pipeline。詳細內容可以從《瘋狂Python講義》這本書中得到
Ⅱ python 圖片讀取 常用操作方法
批量獲取圖片:
keras 多張圖片:
很多情況下,你並不能使用以上這些方法來直接輸入數據去訓練或者預測,原因是你的數據集太大了,沒辦法把所有的圖片都載入到內存當中。那keras的data generator就派上用場了,當你的模型需要訓練數據的時候,generator會自動從cpu生成一批圖片,喂到GPU裡面讓模型進行訓練,依次循環,直到訓練結束。
壓縮數據中維度為1的維度, numpy.squeeze()
模型是不能直接對圖片進行卷積操作的,必須先轉化為numpy數組才能輸入模型裡面去,而且如果數據集的圖片尺寸不統一,也有不同的操作細節。
keras 模型保存路徑: C:\Users\你的用戶名.keras\models
notop代表是否包括頂層的全連接層,默認include_top=True,包括全連接層。
tf -- tensorflow 或者 CNTK
th -- theano
Ⅲ linux下python怎麼寫爬蟲獲取圖片
跟linux有什麼關系,python是跨平台的,爬取圖片的代碼如下:
import urllib.requestimport osimport randomdef url_open(url):
req=urllib.request.Request(url) #為請求設置user-agent,使得程序看起來更像一個人類
req.add_header('User-Agent','Mozilla/5.0 (Windows NT 6.1; WOW64; rv:43.0) Gecko/20100101 Firefox/43.0') #代理IP,使用戶能以不同IP訪問,從而防止被伺服器發現
'''iplist=['1.193.162.123:8000','1.193.162.91:8000','1.193.163.32:8000']
proxy_support=urllib.request.ProxyHandler({'http':random.choice(iplist)})
opener=urllib.request.build_opener(proxy_support)
opener.addheaders=[('User-Agent','Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/42.0.2311.154 Safari/537.36 LBBROWSER')]
urllib.request.install_opener(opener)'''
response=urllib.request.urlopen(req)
html=response.read() return htmldef get_page(url):
html=url_open(url).decode('utf-8')
a=html.find('current-comment-page')+23
b=html.find(']',a) #print(html[a:b])
return html[a:b]def find_imgs(url):
html=url_open(url).decode('utf-8')
img_addrs=[]
a=html.find('img src=') while a!=-1:
b=html.find('.jpg',a,a+140) if b!=-1: if html[a+9]!='h':
img_addrs.append('http:'+html[a+9:b+4]) else:
img_addrs.append(html[a+9:b+4]) else:
b=a+9
a=html.find('img src=',b) for each in img_addrs:
print(each+'我的列印') return img_addrsdef save_imgs(folder,img_addrs):
for each in img_addrs: #print('one was saved')
filename=each.split('/')[-1] with open(filename,'wb') as f:
img=url_open(each)
f.write(img)def download_mm(folder='ooxx',pages=10):
os.mkdir(folder)
os.chdir(folder)
url=""
page_num=int(get_page(url)) for i in range(pages):
page_num=page_num-1
page_url=url+'page-'+str(page_num)+'#comments'
img_addrs=find_imgs(page_url)
save_imgs(folder,img_addrs)if __name__=='__main__':
download_mm()
完成
運行結果
Ⅳ 如何用Python做爬蟲
在我們日常上網瀏覽網頁的時候,經常會看到一些好看的圖片,我們就希望把這些圖片保存下載,或者用戶用來做桌面壁紙,或者用來做設計的素材。
我們最常規的做法就是通過滑鼠右鍵,選擇另存為。但有些圖片滑鼠右鍵的時候並沒有另存為選項,還有辦法就通過就是通過截圖工具截取下來,但這樣就降低圖片的清晰度。好吧其實你很厲害的,右鍵查看頁面源代碼。
我們可以通過python來實現這樣一個簡單的爬蟲功能,把我們想要的代碼爬取到本地。下面就看看如何使用python來實現這樣一個功能。
Ⅳ 如何用Python爬取數據
方法/步驟
在做爬取數據之前,你需要下載安裝兩個東西,一個是urllib,另外一個是python-docx。
7
這個爬下來的是源代碼,如果還需要篩選的話需要自己去添加各種正則表達式。
Ⅵ python爬蟲的工作步驟
當前處於一個大數據的時代,一般網站數據來源有二:網站用戶自身產生的數據和網站從其他來源獲取的數據,今天要分享的是如何從其他網站獲取你想要的數據。
目前最適合用於寫爬蟲的語言是python,python中最受歡迎的爬蟲框架是scrapy,本文圍繞scrapy來展開講解爬蟲是怎麼工作的。
1.如下圖所示,爬蟲從編寫的spider文件中的start_urls開始,這個列表中的url就是爬蟲抓取的第一個網頁,它的返回值是該url對應網頁的源代碼,我們可以用默認的parse(self,response)函數去列印或解析這個源代碼
2.我們獲取到源代碼之後,就可以從網頁源代碼中找到我們想要的信息或需要進一步訪問的url,提取信息這一步,scrapy中集成了xpath,正則(re),功能十分強大,提取到信息之後會通過yield進入到中間件當中。
中間件包括爬蟲中間件和下載中間件,爬蟲中間件主要用於設置處理爬蟲文件中的代碼塊,下載中間件主要用於判斷爬蟲進入網頁前後的爬取狀態,在此中間件中,你可以根據爬蟲的返回狀態去做進一步判斷。
最後我們將yield過來的item,即就是我們想要的數據會在pipeline.py文件中進行處理,存入資料庫,寫入本地文件,都可以在這里進行,另外,為了減少代碼冗餘,建議所有與設置參數有關的參數,都寫在settings.py中去
Ⅶ 如何用python實現爬取微博相冊所有圖片
三種方案:
1.直接用Python的requests庫直接爬取,不過這個需要手動做的事情就比較多了,基本上就看你的Python功力了
2.使用scrapy爬蟲框架,這個框架如果不熟悉的話只能自己先去了解下這個框架怎麼用
3.使用自動測試框架selemium模擬登錄操作,及圖片爬取,這個對於大多數會點Python編碼的人來說是最好的選擇了,他比較直觀的能看到怎麼去獲取數據
每種方案的前提都是你必須有一定基礎的編碼能力才行,不是隨便一個人就能用的
Ⅷ python爬蟲怎麼做
Ⅸ Python如何爬取百度圖片
幾乎所有的網站都會有反爬機制,這就需要在爬取網頁時攜帶一些特殊參數,比如:user-agent、Cookie等等,可以在寫代碼的時候用工具將所有參數都帶上。