❶ 經驗分享:對java中的線程感想(多線程)
1.進程和線程的區別
通俗一點說,進程就是程序的一次執行,而線程可以理解為進程中的執行凳局褲的一段程序片段。
用一臘搭點文詞說就是,每個進程都有獨立的代碼和數據空間(進程上下文);而線程可以看成是輕量級的進程。一般來講(不使用特殊技術),同一進程所產生的線程共享同一塊內存空間。
同一進程中的兩段代碼是不可能同時執行的,除非引入線程。
線程是屬於進程的,當進程退出時該進程所產生的線程都會被強制退出並清除。
線程佔用的資源要少於進程所佔用的資源。
進程和線程都可以有優先順序。
在線程系統中進程也是一個線程。可以將進程理解為一個程序的第一個線程。
多進程——在操作系統中,能同時運行多個任務(程序)。
多線程——在同一應用程序中,有多個順序流同時執行。
2.通過鐵路售票程序來理解實現多線程的兩種方法:通過java.lang.Thread類和通過Runnable介面
java中有兩種實現多線程的方式。一是直接繼承Thread類,二是實現Runnable介面。那麼這兩種實現多線程的方式在應用上有什麼區別呢?
為了回答這個問題,我們可以通過編寫一段代碼來進行分析。我們用代碼來模擬鐵路售票系統,實現通過四個售票點發售某日某次列車的100張車票,一個售票點用一個線程表示。
我們首先這樣編寫這個程序:
public class ThreadDome1{
public static void main(String[] args){
ThreadTest t = new ThreadTest();
t.start();
t.start();
t.start();
t.start();
}
}
class ThreadTest extends Thread{
private int ticket = 100;
public void run(){
while(true){
if(ticket > 0){
System.out.println(Thread.currentThread().getName() +
"is saling ticket" + ticket--);
}else{
break;
}
}
}
}
上面的代碼中,我們用ThreadTest類模擬售票處的售票過程,run方法中的每一次循環都將總票數減1,模擬賣出一張車票,同時該車票號列印出來,直接剩餘的票數到零為止。在ThreadDemo1類的main方法中,我們創建了一個線程對象,並重復啟動四次,希望通過這種方式產生四個線程。從運行的結果來看我們發現其實只有一個線程在運行,這個結果告訴我們:一個線程對象只能啟動一個線程,無論你調用多少遍start()方法,結果只有一個線程。
我們接著修棗簡改ThreadDemo1,在main方法中創建四個Thread對象:
public class ThreadDemo1{
public static void main(String[] args){
new ThreadTest().start();
new ThreadTest().start();
new ThreadTest().start();
new ThreadTest().start();
}
}
class ThreadTest extends Thread{
private int ticket = 100;
public void run(){
while(true){
if(ticket > 0){
System.out.println(Thread.currentThread().getName() +
" is saling ticket" + ticket--);
}else{
break;
}
}
}
}
這下達到目的了嗎?
從結果上看每個票號都被列印了四次,即四個線程各自賣各自的100張票,而不去賣共同的100張票。這種情況是怎麼造成的呢?我們需要的是,多個線程去處理同一個資源,一個資源只能對應一個對象,在上面的程序中,我們創建了四個ThreadTest對象,就等於創建了四個資源,每個資源都有100張票,每個線程都在獨自處理各自的資源。
經過這些實驗和分析,可以總結出,要實現這個鐵路售票程序,我們只能創建一個資源對象,但要創建多個線程去處理同一個資源對象,並且每個線程上所運行的是相同的程序代碼。在回顧一下使用介面編寫多線程的過程。
public class ThreadDemo1{
public static void main(String[] args){
ThreadTest t = new ThreadTest();
new Thread(t).start();
new Thread(t).start();
new Thread(t).start();
new Thread(t).start();
}
}
class ThreadTest implements Runnable{
private int tickets = 100;
public void run(){
while(true){
if(tickets > 0){
System.out.println(Thread.currentThread().getName() +
" is saling ticket " + tickets--);
}
}
}
}
上面的程序中,創建了四個線程,每個線程調用的是同一個ThreadTest對象中的run()方法,訪問的是同一個對象中的變數(tickets)的實例,這個程序滿足了我們的需求。在Windows上可以啟動多個記事本程序一樣,也就是多個進程使用同一個記事本程序代碼。
可見,實現Runnable介面相對於繼承Thread類來說,有如下顯著的好處:
(1)適合多個相同程序代碼的線程去處理同一資源的情況,把虛擬CPU(線程)同程序的代碼,數據有效的分離,較好地體現了面向對象的設計思想。
(2)可以避免由於Java的單繼承特性帶來的局限。我們經常碰到這樣一種情況,即當我們要將已經繼承了某一個類的子類放入多線程中,由於一個類不能同時有兩個父類,所以不能用繼承Thread類的方式,那麼,這個類就只能採用實現Runnable介面的方式了。
(3)有利於程序的健壯性,代碼能夠被多個線程共享,代碼與數據是獨立的。當多個線程的執行代碼來自同一個類的實例時,即稱它們共享相同的代碼。多個線程操作相同的數據,與它們的代碼無關。當共享訪問相同的對象時,即它們共享相同的數據。當線程被構造時,需要的代碼和數據通過一個對象作為構造函數實參傳遞進去,這個對象就是一個實現了Runnable介面的類的實例。
❷ 雲南java培訓學校告訴你關於線程安全問題分析
在學習java編程開發語言的過程中,我們掌握了線程與線程池等相關技術知識。今天,北大青鳥雲南計算機學院http://www.kmbdqn.cn/就關於線程安全問題給大家做一個簡單的喊枝答說明和介紹,一起來了解一下吧。
線程安全就是多線程訪問時,採用了加鎖機制,當一個線程訪問該類的某個數據時,進行保護,其他線程不能進行訪問直到該線程讀取完,其他線程才可使用。不會出現數據不一致或者數據污染。
線程不安全就是不提供數據訪問保護,有可能出現多個線程先後更改數據造成所得到的數據是臟數據搭罩。
什麼時候考慮到線程安全:
一個對象是否需要線程安全,取決於該對象是否被多線程訪問。這指的是程序中訪問對象的方式,而不是對象要實現的功能。要使得對象是線程安全的,要採用同步機制來協同對對象可變狀態的訪問。Java常用的同步機制是Synchronized,還包括volatile類型的變數,顯示鎖以及原子變數。在多個線程中,當它們同時訪問同個類時,每次執行的結果和單線程結果一致,且變數值跟預期一致,這個類則是線程安全的。
鎖的特性
鎖機制的兩種特性:
互斥性:即同一時間只允許一個線程持有某個對象的鎖,通過這種特性來實現多線程中的協調機制,這樣在同一時間只有一個線程對需同步的代碼塊(復合操作)進行訪問。互斥性我們也往往稱為操作的原子性。
可見性:必須確保在鎖被釋放之前,對共享變數所做的修改,對於隨後獲得該鎖的另一個線程是可見的,否則另一個線程可能是在本地緩存的某個副本上繼續操作從而引起不一致。
掛起、休眠、阻塞和非阻塞
掛起:當線程被掛起時,其會失去CPU的使用時間,直到被其他線程(用戶線程或調試線程)喚醒。
休眠:同樣是會失去CPU的使用時間,但是在過了指定的休眠時間之後,它會自動激活,無需喚醒(整個喚醒表面看是自動的,但實際上也得有守護線程去喚醒,只是不需編程者手動干預)。
阻塞:在線程執行時,所需要的資源不能得到,則線程被掛起,直到滿足可操作的條件。
非阻塞:在線程執行時,鄭慧所需要的資源不能得到,則線程不是被掛起等待,而是繼續執行其餘事情,等待條件滿足了後,收到了通知(同樣是守護線程去做)再執行。
❸ 怎樣分析java線程堆棧日誌
Java線程堆棧是一個運行中的Java應用程序的所有線程的一個快照。它會顯示一些像當前的堆棧跟蹤、狀態以及線程名稱之類的信息。線程列表中包括由JVM本身創建的線程(負責垃圾收集、信號處理等管理工作)和由應用程序創建的線程。
通過給JVM發送一個SIGQUIT信號,您可以得到一個線程堆。在Unix操作系統(Solaris/Linux/HP-Unix等)中敏慧,通過kill-3<pid>命令可以得到線程堆,(在啟如尺動腳本中將輸出重定向到文件中是一個很渣拿高好的習慣,start.sh>trace.log 2>&1)。在Windows操作系統中,您可以在命令窗口鍵入ctrl-break得到線程堆。線程堆會輸出到JVM的stdout或者stderr。輸出出線程堆之後,應用程序繼續正常運行。當您給JVM發送SIGQUIT信號時,JVM的信號處理器會通過輸出線程堆來響應這一信號。當程序運行的時候,您可以在任何點得到線程堆。
❹ 怎樣分析java線程堆棧日誌
itjobJava老師講過:1) 線程堆棧概述及基礎知識
2) 線程堆棧的生成原理以及相關工具
3) 不同JVM線程堆棧的格式的差異(Sun HotSpot、IBM JRE、Oracal JRockit)
4) 線程堆棧日誌介紹以及解析方法
5) 線程堆棧的分析和相關的技術
6) 常見的問題模板(線程竟態、死鎖、IO調用掛死、垃圾回收/OutOfMemoryError問題、死循環等)
7) 線程堆棧問題實例分析
我希望這一系列的培訓能給你帶來確實的幫助,所以請持續關注每周的文章更新。
但是如果彎敬首我在學習過程中有疑問或者無法理解文章中的內容該怎麼辦?
不用擔心,把我當做你的導師就好。任何關於線程堆棧的問題都可以咨詢我(前提是問題不能太low)。請隨意選擇下面的幾種方式與我取得聯系:
1) 直接本文下面發表評論(不好意思的話可以匿名)
2) 將你的線程堆棧數據提交到Root Cause Analysis forum
3) 發Email給我,地址是 @[email protected]
能幫我分析我們產品上遇到的問題么?
當然可以,如果你願意的話可以把你的堆棧現場數據通過郵件或論壇 Root Cause Analysis forum發給我。處理實際問題是才是學習提升技能的王道。
我稿唯真心期望大家能夠喜歡這個培訓。所以我會盡我所能去為你提供高質量的材料,並回答大家的各種問題。
在介紹線程堆棧分析技術和問題模式之前,先要給大家講講基礎的內容。所以在這篇帖子里,我將先覆蓋到最基本的內容,這樣大家就能更好的去理解JVM、中間件、以及Java EE容器之間的交互。
Java VM 概述
Java虛擬機是Jave EE 平台的基礎。它是中間件和應用程序被部署和運行的地方。
JVM向中間件軟體和你的Java/Java EE程序提供了下面這些東西:
– (二進制形式的)Java / Java EE 程序運行環境
– 一些程序功能特性和工具 (IO 基礎設施,數據結構,線程管理,安全,監控 等等.)
– 藉助垃圾回收的動態內存分配與管理
你的JVM可以駐留在許多的操作系統 (Solaris, AIX, Windows 等等.)之上,並且能根據你的物理伺服器配置,你可以在每台物理/虛擬伺服器上安裝1到多個JVM進程.
JVM與中間件之間的交互
下面這張圖展示了JVM、中間件和應用程序之間的高層交互模型。
如你所見,標准Java EE應用程序的線程的分配實在中間件內核與JVM之間完成的。(當然也有例外,應用程序可以直接調用API來創建線程,這種做法並不常見,而且在使用的過程中也要特別的小心)
同時,請注意一些線程是由JVM內部來進行管理的,典型的例子就是垃圾回收線程,JVM內部使用這個線程來做並行的垃圾回收處理。
因為大多數的線程分配都是由Java EE容器完成的,所以能夠理解和認識線程堆棧跟蹤,並能從線程堆棧數據中識別出它來,對你而言很重要. 這可以讓你能夠快速的知道Java EE容器正要執行的是什麼類型的請求.
從一個線程轉儲堆棧的分析角度來看,你將能了解從JVM發現的線程池之間的不同,並識別出請求的類型.
最後一節會向你提供對於HotSop VM而言什麼是JVM線程堆棧的一個概述,還有你將會遇到的各種不同埋數的線程. 而對 IBM VM 線程堆棧形式詳細內容將會在第四節向你提供.
請注意你可以從根本原因分析論壇獲得針對本文的線程堆棧示例.
JVM 線程堆棧——它是什麼?
JVM線程堆棧是一個給定時間的快照,它能向你提供所有被創建出來的Java線程的完整清單.
❺ Java多線程程序設計詳細解析
一、理解多線程
多線程是這樣一種機制,它允許在程序中並發執行多個指令流,每個指令流都稱為一個線程,彼此間互相獨立。
線程又稱為輕量級進程,它和進程一樣擁有獨立的執行控制,由操作系統負責調度,區別在於線程沒有獨立的存儲空間,而是和所屬進程中的其它線程共享一個存儲空間,這使得線程間的通信遠較進程簡單。
多個線程的執行是並發的,也就是在邏輯上「同時」,而不管是否是物理上的「同時」。如果系統只有一個CPU,那麼真正的「同時」是不可能的,但是由於CPU的速度非常快,用戶感覺不到其中的區別,因此我們也不用關心它,只需要設想各個線程是同時執行即可。
多線程和傳統的單線程在程序設計上最大的區別在於,由於各個線程的控制流彼此獨立,使得各個線程之間的代碼是亂序執行的,由此帶來的線程調度,同步等問題,將在以後探討。
二、在Java中實現多線凱液慎程
我們不妨設想,為了創建一個新的線程,我們需要做些什麼?很顯然,我們必須指明這個線程所要執行的代碼,而這就是在Java中實現多線程我們所需要做的一切!
真是神奇!Java是如何做到這一點的?通過類!作為一個完全面向對象的語言,Java提供了類java.lang.Thread來方便多線程編程,這個類提供了大量的方法來方便我們控制自己的各個線程,我們以後的討論都將圍繞這個類進行。
那麼如何提供給 Java 我們要線程執行的代碼呢?讓我們來看一看 Thread 類。Thread 類最重要的方法是run(),它為Thread類的方法start()所調用,提供我們的線程所要執行的代碼。為了指定我們自己的代碼,只需要覆蓋它!
方法一:繼承 Thread 類,覆蓋方法 run(),我們在創建的 Thread 類的子類中重寫 run() ,加入線程所要執行的代碼即可。下面是一個例子:
public class MyThread extends Thread
{
int count= 1, number;
public MyThread(int num)
{
number = num;
System.out.println
("創建線程 " + number);
}
public void run() {
while(true) {
System.out.println
("線程 " + number + ":計數 " + count);
if(++count== 6) return;
}
}
public static void main(String args[])
{
for(int i = 0;
i 〈 5; i++) new MyThread(i+1).start();
}
}
這種方法簡單明了,符合大家的習慣,但是,它也有一個很大的缺點,那就是如果我們的類已經從一個類繼承(如小程序必須繼承自 Applet 類),則無法再繼承 Thread 類,這時如果我們又不想建立一個新的類,應該怎麼辦呢?
我們不妨來探索一種新的方法:我們不創建Thread類的子類,而是直接使用它,那麼我們只能將我們的方法作為參數傳遞給 Thread 類的實例,有點類似回調函數。但是 Java 沒有指針,我們只能傳遞一個包含這個方法的類的實例。
那麼如何限制這個類盯敬必須包含這一方法呢?當然是使用介面!(雖然抽象類也可滿足,但是需要繼承,而我們之所以要採用這種新方法,不就是為了避免繼承帶來的限制嗎?)
Java 提供了介面 java.lang.Runnable 來支持這種方法。
方法二:實現 Runnable 介面
Runnable介面只有一個方法run(),我們聲明自己的類實現Runnable介面並提供這一方法,將我們的線程代碼寫入其中,就完成了這一部分的任務。但是Runnable介面並沒有任何對線程的支持,我們還必須創建Thread類的實例,這一點通過Thread類的構造函數public Thread(Runnable target);來實現。下面埋禪是一個例子:
public class MyThread implements Runnable
{
int count= 1, number;
public MyThread(int num)
{
number = num;
System.out.println("創建線程 " + number);
}
public void run()
{
while(true)
{
System.out.println
("線程 " + number + ":計數 " + count);
if(++count== 6) return;
}
}
public static void main(String args[])
{
for(int i = 0; i 〈 5;
i++) new Thread(new MyThread(i+1)).start();
}
}
嚴格地說,創建Thread子類的實例也是可行的,但是必須注意的是,該子類必須沒有覆蓋 Thread 類的 run 方法,否則該線程執行的將是子類的 run 方法,而不是我們用以實現Runnable 介面的類的 run 方法,對此大家不妨試驗一下。
使用 Runnable 介面來實現多線程使得我們能夠在一個類中包容所有的代碼,有利於封裝,它的缺點在於,我們只能使用一套代碼,若想創建多個線程並使各個線程執行不同的代碼,則仍必須額外創建類,如果這樣的話,在大多數情況下也許還不如直接用多個類分別繼承 Thread 來得緊湊。
綜上所述,兩種方法各有千秋,大家可以靈活運用。
下面讓我們一起來研究一下多線程使用中的一些問題。
三、線程的四種狀態
1. 新狀態:線程已被創建但尚未執行(start() 尚未被調用)。
2. 可執行狀態:線程可以執行,雖然不一定正在執行。CPU 時間隨時可能被分配給該線程,從而使得它執行。
3. 死亡狀態:正常情況下 run() 返回使得線程死亡。調用 stop()或 destroy() 亦有同樣效果,但是不被推薦,前者會產生異常,後者是強制終止,不會釋放鎖。
4. 阻塞狀態:線程不會被分配 CPU 時間,無法執行。
四、線程的優先順序
線程的優先順序代表該線程的重要程度,當有多個線程同時處於可執行狀態並等待獲得 CPU 時間時,線程調度系統根據各個線程的優先順序來決定給誰分配 CPU 時間,優先順序高的線程有更大的機會獲得 CPU 時間,優先順序低的線程也不是沒有機會,只是機會要小一些罷了。
你可以調用 Thread 類的方法 getPriority() 和 setPriority()來存取線程的優先順序,線程的優先順序界於1(MIN_PRIORITY)和10(MAX_PRIORITY)之間,預設是5(NORM_PRIORITY)。
五、線程的同步
由於同一進程的多個線程共享同一片存儲空間,在帶來方便的同時,也帶來了訪問沖突這個嚴重的問題。Java語言提供了專門機制以解決這種沖突,有效避免了同一個數據對象被多個線程同時訪問。
由於我們可以通過 private 關鍵字來保證數據對象只能被方法訪問,所以我們只需針對方法提出一套機制,這套機制就是 synchronized 關鍵字,它包括兩種用法:synchronized 方法和 synchronized 塊。
1. synchronized 方法:通過在方法聲明中加入 synchronized關鍵字來聲明 synchronized 方法。如:
public synchronized void accessVal(int newVal);
synchronized 方法控制對類成員變數的訪問:每個類實例對應一把鎖,每個 synchronized 方法都必須獲得調用該方法的類實例的鎖方能執行,否則所屬線程阻塞,方法一旦執行,就獨占該鎖,直到從該方法返回時才將鎖釋放,此後被阻塞的線程方能獲得該鎖,重新進入可執行狀態。
這種機制確保了同一時刻對於每一個類實例,其所有聲明為 synchronized 的成員函數中至多隻有一個處於可執行狀態(因為至多隻有一個能夠獲得該類實例對應的鎖),從而有效避免了類成員變數的訪問沖突(只要所有可能訪問類成員變數的方法均被聲明為 synchronized)。
在 Java 中,不光是類實例,每一個類也對應一把鎖,這樣我們也可將類的靜態成員函數聲明為 synchronized ,以控制其對類的靜態成員變數的訪問。
synchronized 方法的缺陷:若將一個大的方法聲明為synchronized 將會大大影響效率,典型地,若將線程類的方法 run() 聲明為 synchronized ,由於在線程的整個生命期內它一直在運行,因此將導致它對本類任何 synchronized 方法的調用都永遠不會成功。當然我們可以通過將訪問類成員變數的代碼放到專門的方法中,將其聲明為 synchronized ,並在主方法中調用來解決這一問題,但是 Java 為我們提供了更好的解決辦法,那就是 synchronized 塊。
2. synchronized 塊:通過 synchronized關鍵字來聲明synchronized 塊。語法如下:
synchronized(syncObject)
{
//允許訪問控制的代碼
}
#p#副標題#e#
synchronized 塊是這樣一個代碼塊,其中的代碼必須獲得對象 syncObject (如前所述,可以是類實例或類)的鎖方能執行,具體機制同前所述。由於可以針對任意代碼塊,且可任意指定上鎖的對象,故靈活性較高。
六、線程的阻塞為了解決對共享存儲區的訪問沖突,Java 引入了同步機制,現在讓我們來考察多個線程對共享資源的訪問,顯然同步機制已經不夠了,因為在任意時刻所要求的資源不一定已經准備好了被訪問,反過來,同一時刻准備好了的資源也可能不止一個。為了解決這種情況下的訪問控制問題,Java 引入了對阻塞機制的支持。
阻塞指的是暫停一個線程的執行以等待某個條件發生(如某資源就緒),學過操作系統的同學對它一定已經很熟悉了。Java 提供了大量方法來支持阻塞,下面讓我們逐一分析。
1. sleep() 方法:sleep() 允許 指定以毫秒為單位的一段時間作為參數,它使得線程在指定的時間內進入阻塞狀態,不能得到CPU 時間,指定的時間一過,線程重新進入可執行狀態。典型地,sleep() 被用在等待某個資源就緒的情形:測試發現條件不滿足後,讓線程阻塞一段時間後重新測試,直到條件滿足為止。
2. suspend() 和 resume() 方法:兩個方法配套使用,suspend()使得線程進入阻塞狀態,並且不會自動恢復,必須其對應的resume() 被調用,才能使得線程重新進入可執行狀態。典型地,suspend() 和 resume() 被用在等待另一個線程產生的結果的情形:測試發現結果還沒有產生後,讓線程阻塞,另一個線程產生了結果後,調用 resume() 使其恢復。
3. yield() 方法:yield() 使得線程放棄當前分得的 CPU 時間,但是不使線程阻塞,即線程仍處於可執行狀態,隨時可能再次分得 CPU 時間。調用 yield() 的效果等價於調度程序認為該線程已執行了足夠的時間從而轉到另一個線程。
4. wait() 和 notify() 方法:兩個方法配套使用,wait() 使得線程進入阻塞狀態,它有兩種形式,一種允許 指定以毫秒為單位的一段時間作為參數,另一種沒有參數,前者當對應的 notify() 被調用或者超出指定時間時線程重新進入可執行狀態,後者則必須對應的 notify() 被調用。
初看起來它們與 suspend() 和 resume() 方法對沒有什麼分別,但是事實上它們是截然不同的。區別的核心在於,前面敘述的所有方法,阻塞時都不會釋放佔用的鎖(如果佔用了的話),而這一對方法則相反。
上述的核心區別導致了一系列的細節上的區別。
首先,前面敘述的所有方法都隸屬於 Thread 類,但是這一對卻直接隸屬於 Object 類,也就是說,所有對象都擁有這一對方法。初看起來這十分不可思議,但是實際上卻是很自然的,因為這一對方法阻塞時要釋放佔用的鎖,而鎖是任何對象都具有的,調用任意對象的 wait() 方法導致線程阻塞,並且該對象上的鎖被釋放。
而調用 任意對象的notify()方法則導致因調用該對象的 wait() 方法而阻塞的線程中隨機選擇的一個解除阻塞(但要等到獲得鎖後才真正可執行)。
其次,前面敘述的所有方法都可在任何位置調用,但是這一對方法卻必須在 synchronized 方法或塊中調用,理由也很簡單,只有在synchronized 方法或塊中當前線程才佔有鎖,才有鎖可以釋放。
同樣的道理,調用這一對方法的對象上的鎖必須為當前線程所擁有,這樣才有鎖可以釋放。因此,這一對方法調用必須放置在這樣的 synchronized 方法或塊中,該方法或塊的上鎖對象就是調用這一對方法的對象。若不滿足這一條件,則程序雖然仍能編譯,但在運行時會出現IllegalMonitorStateException 異常。
wait() 和 notify() 方法的上述特性決定了它們經常和synchronized 方法或塊一起使用,將它們和操作系統的進程間通信機製作一個比較就會發現它們的相似性:synchronized方法或塊提供了類似於操作系統原語的功能,它們的執行不會受到多線程機制的干擾,而這一對方法則相當於 block 和wakeup 原語(這一對方法均聲明為 synchronized)。
它們的結合使得我們可以實現操作系統上一系列精妙的進程間通信的演算法(如信號量演算法),並用於解決各種復雜的線程間通信問題。
關於 wait() 和 notify() 方法最後再說明兩點:
第一:調用 notify() 方法導致解除阻塞的線程是從因調用該對象的 wait() 方法而阻塞的線程中隨機選取的,我們無法預料哪一個線程將會被選擇,所以編程時要特別小心,避免因這種不確定性而產生問題。
第二:除了 notify(),還有一個方法 notifyAll() 也可起到類似作用,唯一的區別在於,調用 notifyAll() 方法將把因調用該對象的 wait() 方法而阻塞的所有線程一次性全部解除阻塞。當然,只有獲得鎖的那一個線程才能進入可執行狀態。
談到阻塞,就不能不談一談死鎖,略一分析就能發現,suspend() 方法和不指定超時期限的 wait() 方法的調用都可能產生死鎖。遺憾的是,Java 並不在語言級別上支持死鎖的避免,我們在編程中必須小心地避免死鎖。
以上我們對 Java 中實現線程阻塞的各種方法作了一番分析,我們重點分析了 wait() 和 notify()方法,因為它們的功能最強大,使用也最靈活,但是這也導致了它們的效率較低,較容易出錯。實際使用中我們應該靈活使用各種方法,以便更好地達到我們的目的。
七、守護線程
守護線程是一類特殊的線程,它和普通線程的區別在於它並不是應用程序的核心部分,當一個應用程序的所有非守護線程終止運行時,即使仍然有守護線程在運行,應用程序也將終止,反之,只要有一個非守護線程在運行,應用程序就不會終止。守護線程一般被用於在後台為其它線程提供服務。
可以通過調用方法 isDaemon() 來判斷一個線程是否是守護線程,也可以調用方法 setDaemon() 來將一個線程設為守護線程。
八、線程組
線程組是一個 Java 特有的概念,在 Java 中,線程組是類ThreadGroup 的對象,每個線程都隸屬於唯一一個線程組,這個線程組在線程創建時指定並在線程的整個生命期內都不能更改。
你可以通過調用包含 ThreadGroup 類型參數的 Thread 類構造函數來指定線程屬的線程組,若沒有指定,則線程預設地隸屬於名為 system 的系統線程組。
在 Java 中,除了預建的系統線程組外,所有線程組都必須顯式創建。在 Java 中,除系統線程組外的每個線程組又隸屬於另一個線程組,你可以在創建線程組時指定其所隸屬的線程組,若沒有指定,則預設地隸屬於系統線程組。這樣,所有線程組組成了一棵以系統線程組為根的樹。
Java 允許我們對一個線程組中的所有線程同時進行操作,比如我們可以通過調用線程組的相應方法來設置其中所有線程的優先順序,也可以啟動或阻塞其中的所有線程。
Java 的線程組機制的另一個重要作用是線程安全。線程組機制允許我們通過分組來區分有不同安全特性的線程,對不同組的線程進行不同的處理,還可以通過線程組的分層結構來支持不對等安全措施的採用。
Java 的 ThreadGroup 類提供了大量的方法來方便我們對線程組樹中的每一個線程組以及線程組中的每一個線程進行操作。
九、總結
在本文中,我們講述了 Java 多線程編程的方方面面,包括創建線程,以及對多個線程進行調度、管理。我們深刻認識到了多線程編程的復雜性,以及線程切換開銷帶來的多線程程序的低效性,這也促使我們認真地思考一個問題:我們是否需要多線程?何時需要多線程?
多線程的核心在於多個代碼塊並發執行,本質特點在於各代碼塊之間的代碼是亂序執行的。我們的程序是否需要多線程,就是要看這是否也是它的內在特點。
假如我們的程序根本不要求多個代碼塊並發執行,那自然不需要使用多線程;假如我們的程序雖然要求多個代碼塊並發執行,但是卻不要求亂序,則我們完全可以用一個循環來簡單高效地實現,也不需要使用多線程;只有當它完全符合多線程的特點時,多線程機制對線程間通信和線程管理的強大支持才能有用武之地,這時使用多線程才是值得的。
#p#副標題#e#