㈠ 關於python中 人臉檢測中的問題
打錯了,前面是face後面是faces
㈡ 如何用pca做人臉識別 python實現.帶客戶端的
基於特徵臉(PCA)的人臉識別方法
特徵臉方法是基於KL變換的人臉識別方法,KL變換是圖像壓縮的一種最優正交變換。高維的圖像空間經過KL變換後得到一組新的正交基,保留其中重要的正交基,由這些基可以張成低維線性空間。如果假設人臉在這些低維線性空間的投影具有可分性,就可以將這些投影用作識別的特徵矢量,這就是特徵臉方法的基本思想。這些方法需要較多的訓練樣本,而且完全是基於圖像灰度的統計特性的。目前有一些改進型的特徵臉方法。
比如人臉灰度照片40x40=1600個像素點,用每個像素的灰度值組成的矩陣代表這個人的人臉。那麼這個人人臉就要1600 個特徵。拿一堆這樣的樣本過來做pca,抽取得到的只是在統計意義下能代表某個樣本的幾個特徵。
人臉識別可以採用神經網 絡深度學習的思路,國內的ColorReco在這邊有比較多的案例。
㈢ 如何線上部署用python基於dlib寫的人臉識別演算法
python使用dlib進行人臉檢測與人臉關鍵點標記
Dlib簡介:
首先給大家介紹一下Dlib
我使用的版本是dlib-18.17,大家也可以在我這里下載:
之後進入python_examples下使用bat文件進行編譯,編譯需要先安裝libboost-python-dev和cmake
cd to dlib-18.17/python_examples
./compile_dlib_python_mole.bat 123
之後會得到一個dlib.so,復制到dist-packages目錄下即可使用
這里大家也可以直接用我編譯好的.so庫,但是也必須安裝libboost才可以,不然python是不能調用so庫的,下載地址:
將.so復制到dist-packages目錄下
sudo cp dlib.so /usr/local/lib/python2.7/dist-packages/1
最新的dlib18.18好像就沒有這個bat文件了,取而代之的是一個setup文件,那麼安裝起來應該就沒有這么麻煩了,大家可以去直接安裝18.18,也可以直接下載復制我的.so庫,這兩種方法應該都不麻煩~
有時候還會需要下面這兩個庫,建議大家一並安裝一下
9.安裝skimage
sudo apt-get install python-skimage1
10.安裝imtools
sudo easy_install imtools1
Dlib face landmarks Demo
環境配置結束之後,我們首先看一下dlib提供的示常式序
1.人臉檢測
dlib-18.17/python_examples/face_detector.py 源程序:
#!/usr/bin/python# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt## This example program shows how to find frontal human faces in an image. In# particular, it shows how you can take a list of images from the command# line and display each on the screen with red boxes overlaid on each human# face.## The examples/faces folder contains some jpg images of people. You can run# this program on them and see the detections by executing the# following command:# ./face_detector.py ../examples/faces/*.jpg## This face detector is made using the now classic Histogram of Oriented# Gradients (HOG) feature combined with a linear classifier, an image# pyramid, and sliding window detection scheme. This type of object detector# is fairly general and capable of detecting many types of semi-rigid objects# in addition to human faces. Therefore, if you are interested in making# your own object detectors then read the train_object_detector.py example# program. ### COMPILING THE DLIB PYTHON INTERFACE# Dlib comes with a compiled python interface for python 2.7 on MS Windows. If# you are using another python version or operating system then you need to# compile the dlib python interface before you can use this file. To do this,# run compile_dlib_python_mole.bat. This should work on any operating# system so long as you have CMake and boost-python installed.# On Ubuntu, this can be done easily by running the command:# sudo apt-get install libboost-python-dev cmake## Also note that this example requires scikit-image which can be installed# via the command:# pip install -U scikit-image# Or downloaded from . import sys
import dlib
from skimage import io
detector = dlib.get_frontal_face_detector()
win = dlib.image_window()
print("a");for f in sys.argv[1:]:
print("a");
print("Processing file: {}".format(f))
img = io.imread(f)
# The 1 in the second argument indicates that we should upsample the image
# 1 time. This will make everything bigger and allow us to detect more
# faces.
dets = detector(img, 1)
print("Number of faces detected: {}".format(len(dets))) for i, d in enumerate(dets):
print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
i, d.left(), d.top(), d.right(), d.bottom()))
win.clear_overlay()
win.set_image(img)
win.add_overlay(dets)
dlib.hit_enter_to_continue()# Finally, if you really want to you can ask the detector to tell you the score# for each detection. The score is bigger for more confident detections.# Also, the idx tells you which of the face sub-detectors matched. This can be# used to broadly identify faces in different orientations.if (len(sys.argv[1:]) > 0):
img = io.imread(sys.argv[1])
dets, scores, idx = detector.run(img, 1) for i, d in enumerate(dets):
print("Detection {}, score: {}, face_type:{}".format(
d, scores[i], idx[i]))5767778798081
我把源代碼精簡了一下,加了一下注釋: face_detector0.1.py
# -*- coding: utf-8 -*-import sys
import dlib
from skimage import io#使用dlib自帶的frontal_face_detector作為我們的特徵提取器detector = dlib.get_frontal_face_detector()#使用dlib提供的圖片窗口win = dlib.image_window()#sys.argv[]是用來獲取命令行參數的,sys.argv[0]表示代碼本身文件路徑,所以參數從1開始向後依次獲取圖片路徑for f in sys.argv[1:]: #輸出目前處理的圖片地址
print("Processing file: {}".format(f)) #使用skimage的io讀取圖片
img = io.imread(f) #使用detector進行人臉檢測 dets為返回的結果
dets = detector(img, 1) #dets的元素個數即為臉的個數
print("Number of faces detected: {}".format(len(dets))) #使用enumerate 函數遍歷序列中的元素以及它們的下標
#下標i即為人臉序號
#left:人臉左邊距離圖片左邊界的距離 ;right:人臉右邊距離圖片左邊界的距離
#top:人臉上邊距離圖片上邊界的距離 ;bottom:人臉下邊距離圖片上邊界的距離
for i, d in enumerate(dets):
print("dets{}".format(d))
print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}"
.format( i, d.left(), d.top(), d.right(), d.bottom())) #也可以獲取比較全面的信息,如獲取人臉與detector的匹配程度
dets, scores, idx = detector.run(img, 1)
for i, d in enumerate(dets):
print("Detection {}, dets{},score: {}, face_type:{}".format( i, d, scores[i], idx[i]))
#繪制圖片(dlib的ui庫可以直接繪制dets)
win.set_image(img)
win.add_overlay(dets) #等待點擊
dlib.hit_enter_to_continue()041424344454647484950
分別測試了一個人臉的和多個人臉的,以下是運行結果:
運行的時候把圖片文件路徑加到後面就好了
python face_detector0.1.py ./data/3.jpg12
一張臉的:
兩張臉的:
這里可以看出側臉與detector的匹配度要比正臉小的很多
2.人臉關鍵點提取
人臉檢測我們使用了dlib自帶的人臉檢測器(detector),關鍵點提取需要一個特徵提取器(predictor),為了構建特徵提取器,預訓練模型必不可少。
除了自行進行訓練外,還可以使用官方提供的一個模型。該模型可從dlib sourceforge庫下載:
arks.dat.bz2
也可以從我的連接下載:
這個庫支持68個關鍵點的提取,一般來說也夠用了,如果需要更多的特徵點就要自己去訓練了。
dlib-18.17/python_examples/face_landmark_detection.py 源程序:
#!/usr/bin/python# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt## This example program shows how to find frontal human faces in an image and# estimate their pose. The pose takes the form of 68 landmarks. These are# points on the face such as the corners of the mouth, along the eyebrows, on# the eyes, and so forth.## This face detector is made using the classic Histogram of Oriented# Gradients (HOG) feature combined with a linear
㈣ Python人臉口罩識別的好處
不用拿掉口罩就可以識別,主要通過被口罩遮擋部位以外部分就可以識別,方便了很多人省去拿口罩的步驟。
對笑臉數據集genki4k進行訓練和測試(包括SVM、CNN),輸出模型訓練精度和測試精度(F1-score和ROC),實現檢測圖片笑臉和實時視頻笑臉檢測。
自從新冠疫情爆發以來,口罩成為了人們生活中必需品,也成為絕對熱門的話題存在。尤其是最近以來,全國各地的疫情又有變嚴重的趨勢,所以,戴口罩不僅是為了自身安全,也是對他人的負責。在疫情之下,出門不戴口罩不僅對自己不負責,對他人而言也是一種潛在的威脅。
㈤ python人臉識別代碼怎麼寫
檢查cv2是否存在(看報錯)。如果不存在,用pip install cv2安裝。如果存在,請核對代碼是否存在語法錯誤。
㈥ 有一張人臉的側臉圖像,如何用python及相關的庫來計算人臉轉過的角度。
這個很難辦到,不過可以通過判斷關鍵點的特點進行判斷,但是准確率不高
前言
很多人都認為人臉識別是一項非常難以實現的工作,看到名字就害怕,然後心懷忐忑到網上一搜,看到網上N頁的教程立馬就放棄了。這些人里包括曾經的我自己。其實如果如果你不是非要深究其中的原理,只是要實現這一工作的話,人臉識別也沒那麼難。今天我們就來看看如何在40行代碼以內簡單地實現人臉識別。
一點區分
對於大部分人來說,區分人臉檢測和人臉識別完全不是問題。但是網上有很多教程有無無意地把人臉檢測說成是人臉識別,誤導群眾,造成一些人認為二者是相同的。其實,人臉檢測解決的問題是確定一張圖上有木有人臉,而人臉識別解決的問題是這個臉是誰的。可以說人臉檢測是是人識別的前期工作。今天我們要做的是人臉識別。
所用工具
Anaconda 2——Python 2
Dlib
scikit-image
Dlib
對於今天要用到的主要工具,還是有必要多說幾句的。Dlib是基於現代C++的一個跨平台通用的框架,作者非常勤奮,一直在保持更新。Dlib內容涵蓋機器學習、圖像處理、數值演算法、數據壓縮等等,涉獵甚廣。更重要的是,Dlib的文檔非常完善,例子非常豐富。就像很多庫一樣,Dlib也提供了Python的介面,安裝非常簡單,用pip只需要一句即可:
pip install dlib
上面需要用到的scikit-image同樣只是需要這么一句:
pip install scikit-image
註:如果用pip install dlib安裝失敗的話,那安裝起來就比較麻煩了。錯誤提示很詳細,按照錯誤提示一步步走就行了。
人臉識別
之所以用Dlib來實現人臉識別,是因為它已經替我們做好了絕大部分的工作,我們只需要去調用就行了。Dlib裡面有人臉檢測器,有訓練好的人臉關鍵點檢測器,也有訓練好的人臉識別模型。今天我們主要目的是實現,而不是深究原理。感興趣的同學可以到官網查看源碼以及實現的參考文獻。今天的例子既然代碼不超過40行,其實是沒啥難度的。有難度的東西都在源碼和論文里。
首先先通過文件樹看一下今天需要用到的東西:
准備了六個候選人的圖片放在candidate-faces文件夾中,然後需要識別的人臉圖片test.jpg。我們的工作就是要檢測到test.jpg中的人臉,然後判斷她到底是候選人中的誰。另外的girl-face-rec.py是我們的python腳本。shape_predictor_68_face_landmarks.dat是已經訓練好的人臉關鍵點檢測器。dlib_face_recognition_resnet_model_v1.dat是訓練好的ResNet人臉識別模型。ResNet是何凱明在微軟的時候提出的深度殘差網路,獲得了 ImageNet 2015 冠軍,通過讓網路對殘差進行學習,在深度和精度上做到了比
CNN 更加強大。
1. 前期准備
shape_predictor_68_face_landmarks.dat和dlib_face_recognition_resnet_model_v1.dat都可以在這里找到。
然後准備幾個人的人臉圖片作為候選人臉,最好是正臉。放到candidate-faces文件夾中。
本文這里准備的是六張圖片,如下:
她們分別是
然後准備四張需要識別的人臉圖像,其實一張就夠了,這里只是要看看不同的情況:
可以看到前兩張和候選文件中的本人看起來還是差別不小的,第三張是候選人中的原圖,第四張圖片微微側臉,而且右側有陰影。
2.識別流程
數據准備完畢,接下來就是代碼了。識別的大致流程是這樣的:
3.代碼
代碼不做過多解釋,因為已經注釋的非常完善了。以下是girl-face-rec.py
# -*- coding: UTF-8 -*-
import sys,os,dlib,glob,numpy
from skimage import io
if len(sys.argv) != 5:
print "請檢查參數是否正確"
exit()
# 1.人臉關鍵點檢測器
predictor_path = sys.argv[1]
# 2.人臉識別模型
face_rec_model_path = sys.argv[2]
# 3.候選人臉文件夾
faces_folder_path = sys.argv[3]
# 4.需識別的人臉
img_path = sys.argv[4]
# 1.載入正臉檢測器
detector = dlib.get_frontal_face_detector()
# 2.載入人臉關鍵點檢測器
sp = dlib.shape_predictor(predictor_path)
# 3. 載入人臉識別模型
facerec = dlib.face_recognition_model_v1(face_rec_model_path)
# win = dlib.image_window()
# 候選人臉描述子list
descriptors = []
# 對文件夾下的每一個人臉進行:
# 1.人臉檢測
# 2.關鍵點檢測
# 3.描述子提取
for f in glob.glob(os.path.join(faces_folder_path, "*.jpg")):
print("Processing file: {}".format(f))
img = io.imread(f)
#win.clear_overlay()
#win.set_image(img)
# 1.人臉檢測
dets = detector(img, 1)
print("Number of faces detected: {}".format(len(dets)))
for k, d in enumerate(dets):
# 2.關鍵點檢測
shape = sp(img, d)
# 畫出人臉區域和和關鍵點
# win.clear_overlay()
# win.add_overlay(d)
# win.add_overlay(shape)
# 3.描述子提取,128D向量
face_descriptor = facerec.compute_face_descriptor(img, shape)
# 轉換為numpy array
v = numpy.array(face_descriptor)
descriptors.append(v)
# 對需識別人臉進行同樣處理
# 提取描述子,不再注釋
img = io.imread(img_path)
dets = detector(img, 1)
dist = []
for k, d in enumerate(dets):
shape = sp(img, d)
face_descriptor = facerec.compute_face_descriptor(img, shape)
d_test = numpy.array(face_descriptor)
# 計算歐式距離
for i in descriptors:
dist_ = numpy.linalg.norm(i-d_test)
dist.append(dist_)
# 候選人名單
candidate = ['Unknown1','Unknown2','Shishi','Unknown4','Bingbing','Feifei']
# 候選人和距離組成一個dict
c_d = dict(zip(candidate,dist))
cd_sorted = sorted(c_d.iteritems(), key=lambda d:d[1])
print "\n The person is: ",cd_sorted[0][0]
dlib.hit_enter_to_continue()
4.運行結果
我們在.py所在的文件夾下打開命令行,運行如下命令
python girl-face-rec.py 1.dat 2.dat ./candidate-faecs test1.jpg
由於shape_predictor_68_face_landmarks.dat和dlib_face_recognition_resnet_model_v1.dat名字實在太長,所以我把它們重命名為1.dat和2.dat。
運行結果如下:
The person is Bingbing。
記憶力不好的同學可以翻上去看看test1.jpg是誰的圖片。有興趣的話可以把四張測試圖片都運行下試試。
這里需要說明的是,前三張圖輸出結果都是非常理想的。但是第四張測試圖片的輸出結果是候選人4。對比一下兩張圖片可以很容易發現混淆的原因。
機器畢竟不是人,機器的智能還需要人來提升。
有興趣的同學可以繼續深入研究如何提升識別的准確率。比如每個人的候選圖片用多張,然後對比和每個人距離的平均值之類的。全憑自己了。
㈦ 怎麼用python調取一個人臉識別 api
必備知識
Haar-like
通俗的來講,就是作為人臉特徵即可。
Haar特徵值反映了圖像的灰度變化情況。例如:臉部的一些特徵能由矩形特徵簡單的描述,如:眼睛要比臉頰顏色要深,鼻樑兩側比鼻樑顏色要深,嘴巴比周圍顏色要深等。
opencv api
要想使用opencv,就必須先知道其能幹什麼,怎麼做。於是API的重要性便體現出來了。就本例而言,使用到的函數很少,也就普通的讀取圖片,灰度轉換,顯示圖像,簡單的編輯圖像罷了。
如下:
讀取圖片
只需要給出待操作的圖片的路徑即可。
import cv2
image = cv2.imread(imagepath)
灰度轉換
灰度轉換的作用就是:轉換成灰度的圖片的計算強度得以降低。
import cv2
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
畫圖
opencv 的強大之處的一個體現就是其可以對圖片進行任意編輯,處理。
下面的這個函數最後一個參數指定的就是畫筆的大小。
import cv2
cv2.rectangle(image,(x,y),(x+w,y+w),(0,255,0),2)
顯示圖像
編輯完的圖像要麼直接的被顯示出來,要麼就保存到物理的存儲介質。
import cv2
cv2.imshow("Image Title",image)
獲取人臉識別訓練數據
看似復雜,其實就是對於人臉特徵的一些描述,這樣opencv在讀取完數據後很據訓練中的樣品數據,就可以感知讀取到的圖片上的特徵,進而對圖片進行人臉識別。
import cv2
face_cascade = cv2.CascadeClassifier(r'./haarcascade_frontalface_default.xml')
里賣弄的這個xml文件,就是opencv在GitHub上共享出來的具有普適的訓練好的數據。我們可以直接的拿來使用。
訓練數據參考地址:
探測人臉
說白了,就是根據訓練的數據來對新圖片進行識別的過程。
import cv2
# 探測圖片中的人臉
faces = face_cascade.detectMultiScale(
gray,
scaleFactor = 1.15,
minNeighbors = 5,
minSize = (5,5),
flags = cv2.cv.CV_HAAR_SCALE_IMAGE
)
我們可以隨意的指定裡面參數的值,來達到不同精度下的識別。返回值就是opencv對圖片的探測結果的體現。
處理人臉探測的結果
結束了剛才的人臉探測,我們就可以拿到返回值來做進一步的處理了。但這也不是說會多麼的復雜,無非添加點特徵值罷了。
import cv2
print "發現{0}個人臉!".format(len(faces))
for(x,y,w,h) in faces:
cv2.rectangle(image,(x,y),(x+w,y+w),(0,255,0),2)
實例
有了剛才的基礎,我們就可以完成一個簡單的人臉識別的小例子了。
圖片素材
下面的這張圖片將作為我們的檢測依據。
人臉檢測代碼
# coding:utf-8
import sys
reload(sys)
sys.setdefaultencoding('utf8')
# __author__ = '郭 璞'
# __date__ = '2016/9/5'
# __Desc__ = 人臉檢測小例子,以圓圈圈出人臉
import cv2
# 待檢測的圖片路徑
imagepath = r'./heat.jpg'
# 獲取訓練好的人臉的參數數據,這里直接從GitHub上使用默認值
face_cascade = cv2.CascadeClassifier(r'./haarcascade_frontalface_default.xml')
# 讀取圖片
image = cv2.imread(imagepath)
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
# 探測圖片中的人臉
faces = face_cascade.detectMultiScale(
gray,
scaleFactor = 1.15,
minNeighbors = 5,
minSize = (5,5),
flags = cv2.cv.CV_HAAR_SCALE_IMAGE
)
print "發現{0}個人臉!".format(len(faces))
for(x,y,w,h) in faces:
# cv2.rectangle(image,(x,y),(x+w,y+w),(0,255,0),2)
cv2.circle(image,((x+x+w)/2,(y+y+h)/2),w/2,(0,255,0),2)
cv2.imshow("Find Faces!",image)
cv2.waitKey(0)
人臉檢測結果
輸出圖片:
輸出結果:
D:\Software\Python2\python.exe E:/Code/Python/DataStructor/opencv/Demo.py
發現3個人臉!
㈧ 人臉識別為什麼用python開發
可以使用OpenCV,OpenCV的人臉檢測功能在一般場合還是不錯的。而ubuntu正好提供了python-opencv這個包,用它可以方便地實現人臉檢測的代碼。
寫代碼之前應該先安裝python-opencv:
#!/usr/bin/python
#-*-coding:UTF-8-*-
#face_detect.py
#FaceDetectionusingOpenCV.Basedonsamplecodefrom:
#http://python.pastebin.com/m76db1d6b
#Usage:pythonface_detect.py<image_file>
importsys,os
fromopencv.cvimport*
fromopencv.highguiimport*
fromPILimportImage,ImageDraw
frommathimportsqrt
defdetectObjects(image):
""""""
grayscale=cvCreateImage(cvSize(image.width,image.height),8,1)
cvCvtColor(image,grayscale,CV_BGR2GRAY)
storage=cvCreateMemStorage(0)
cvClearMemStorage(storage)
cvEqualizeHist(grayscale,grayscale)
cascade=cvLoadHaarClassifierCascade(
'/usr/share/opencv/haarcascades/haarcascade_frontalface_default.xml',
cvSize(1,1))
faces=cvHaarDetectObjects(grayscale,cascade,storage,1.1,2,
CV_HAAR_DO_CANNY_PRUNING,cvSize(20,20))
result=[]
forfinfaces:
result.append((f.x,f.y,f.x+f.width,f.y+f.height))
returnresult
defgrayscale(r,g,b):
returnint(r*.3+g*.59+b*.11)
defprocess(infile,outfile):
image=cvLoadImage(infile);
ifimage:
faces=detectObjects(image)
im=Image.open(infile)
iffaces:
draw=ImageDraw.Draw(im)
forfinfaces:
draw.rectangle(f,outline=(255,0,255))
im.save(outfile,"JPEG",quality=100)
else:
print"Error:cannotdetectfaceson%s"%infile
if__name__=="__main__":
process('input.jpg','output.jpg')
㈨ 關於python人臉識別的問題
應該是沒有找到分類器編碼文件,把 haarcascade_frontalface_default.xml, haarcascade_eye.xml文件放到項目根目錄下,再用cv.CascadeClassifier(path1), cv.CascadeClassifier(path2)兩個API導入,另python下windows的文件路徑要用 \\ 或者 /
㈩ 誰用過python中的第三方庫face recognition
簡介
該庫可以通過python或者命令行即可實現人臉識別的功能。使用dlib深度學習人臉識別技術構建,在戶外臉部檢測資料庫基準(Labeled Faces in the Wild)上的准確率為99.38%。
在github上有相關的鏈接和API文檔。
在下方為提供的一些相關源碼或是文檔。當前庫的版本是v0.2.0,點擊docs可以查看API文檔,我們可以查看一些函數相關的說明等。
安裝配置
安裝配置很簡單,按照github上的說明一步一步來就可以了。
根據你的python版本輸入指令:
pip install face_recognition11
或者
pip3 install face_recognition11
正常來說,安裝過程中會出錯,會在安裝dlib時出錯,可能報錯也可能會卡在那不動。因為pip在編譯dlib時會出錯,所以我們需要手動編譯dlib再進行安裝。
按照它給出的解決辦法:
1、先下載下來dlib的源碼。
git clone
2、編譯dlib。
cd dlib
mkdir build
cd build
cmake .. -DDLIB_USE_CUDA=0 -DUSE_AVX_INSTRUCTIONS=1
cmake --build1234512345
3、編譯並安裝python的拓展包。
cd ..
python3 setup.py install --yes USE_AVX_INSTRUCTIONS --no DLIB_USE_CUDA1212
注意:這個安裝步驟是默認認為沒有GPU的,所以不支持cuda。
在自己手動編譯了dlib後,我們可以在python中import dlib了。
之後再重新安裝,就可以配置成功了。
根據你的python版本輸入指令:
pip install face_recognition11
或者
pip3 install face_recognition11
安裝成功之後,我們可以在python中正常import face_recognition了。
編寫人臉識別程序
編寫py文件:
# -*- coding: utf-8 -*-
#
# 檢測人臉
import face_recognition
import cv2
# 讀取圖片並識別人臉
img = face_recognition.load_image_file("silicon_valley.jpg")
face_locations = face_recognition.face_locations(img)
print face_locations
# 調用opencv函數顯示圖片
img = cv2.imread("silicon_valley.jpg")
cv2.namedWindow("原圖")
cv2.imshow("原圖", img)
# 遍歷每個人臉,並標注
faceNum = len(face_locations)
for i in range(0, faceNum):
top = face_locations[i][0]
right = face_locations[i][1]
bottom = face_locations[i][2]
left = face_locations[i][3]
start = (left, top)
end = (right, bottom)
color = (55,255,155)
thickness = 3
cv2.rectangle(img, start, end, color, thickness)
# 顯示識別結果
cv2.namedWindow("識別")
cv2.imshow("識別", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
注意:這里使用了python-OpenCV,一定要配置好了opencv才能運行成功。
運行結果:
程序會讀取當前目錄下指定的圖片,然後識別其中的人臉,並標注每個人臉。
(使用圖片來自美劇矽谷)
編寫人臉比對程序
首先,我在目錄下放了幾張圖片:
這里用到的是一張喬布斯的照片和一張奧巴馬的照片,和一張未知的照片。
編寫程序:
# 識別圖片中的人臉
import face_recognition
jobs_image = face_recognition.load_image_file("jobs.jpg");
obama_image = face_recognition.load_image_file("obama.jpg");
unknown_image = face_recognition.load_image_file("unknown.jpg");
jobs_encoding = face_recognition.face_encodings(jobs_image)[0]
obama_encoding = face_recognition.face_encodings(obama_image)[0]
unknown_encoding = face_recognition.face_encodings(unknown_image)[0]
results = face_recognition.compare_faces([jobs_encoding, obama_encoding], unknown_encoding )
labels = ['jobs', 'obama']
print('results:'+str(results))
for i in range(0, len(results)):
if results[i] == True:
print('The person is:'+labels[i])
運行結果:
識別出未知的那張照片是喬布斯的。
攝像頭實時識別
代碼:
# -*- coding: utf-8 -*-
import face_recognition
import cv2
video_capture = cv2.VideoCapture(1)
obama_img = face_recognition.load_image_file("obama.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_img)[0]
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
while True:
ret, frame = video_capture.read()
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
if process_this_frame:
face_locations = face_recognition.face_locations(small_frame)
face_encodings = face_recognition.face_encodings(small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
match = face_recognition.compare_faces([obama_face_encoding], face_encoding)
if match[0]:
name = "Barack"
else:
name = "unknown"
face_names.append(name)
process_this_frame = not process_this_frame
for (top, right, bottom, left), name in zip(face_locations, face_names):
top *= 4
right *= 4
bottom *= 4
left *= 4
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), 2)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left+6, bottom-6), font, 1.0, (255, 255, 255), 1)
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video_capture.release()
cv2.destroyAllWindows()5455
識別結果:
我直接在手機上網路了幾張圖試試,程序識別出了奧巴馬。
這個庫很cool啊!