導航:首頁 > 編程語言 > python大數據繪圖

python大數據繪圖

發布時間:2023-06-13 09:53:58

① 如何使用python分析大數據

毫不誇張地說,大數據已經成為任何商業交流中不可肆薯或缺的一部分。桌面和移動搜索向全世界的營銷人員和公司以空前的規模提供著數據,並且隨著物聯網的到來,大量用以消費的數據還會呈指數級增長。這種消費數據對於想要更好地定位目標客戶、弄懂人們怎樣使用他們的產品或服務,並且通過收集信息來提高利潤的公司來說無疑是個金礦。
篩查數據並找到企業真正可以使用的結果的角色落到了軟體開發者、數據科學家和統計學家身上。現在有很多工具輔助大數據分析,但最受歡迎的就是Python。
為什麼選擇Python?
Python最大的優點就是簡單易用。這個語言有著直觀的語法並且還是個強大的多用途語言。這一點在大數據分析環境中很重要,並且許多企業內部已經在使用Python了,比如Google,YouTube,迪士尼,和索尼夢工廠。還有,Python是開源的,並且有很多用於數據科學的類庫。所以,大數據市場急需Python開發者,不是Python開發者的專家也可以以相當塊速度學習這門語言,從而最喚雹鬧大化用在分析數據上的時間,最小化學習這門語言的時間。
用Python進行數據分析之前,你需要從Continuum.io下載Anaconda。這個包有著在Python中研究數據科學時你可能需要的一切東西。它的缺點是下載和更新都是以一個單元進行的,所以更新單個庫很耗時。但這很值得,畢竟它給了你所需的所有工具,所以你不需要糾結。
現在,如果你真的要用Python進行大數據分析的話,毫無疑問你需要成為一個Python開發者。這並不意味著你需要成為這門語言的大師,但你需要了解Python的語法,理解正則表達式,知道和罩什麼是元組、字元串、字典、字典推導式、列表和列表推導式——這只是開始。
各種類庫
當你掌握了Python的基本知識點後,你需要了解它的有關數據科學的類庫是怎樣工作的以及哪些是你需要的。其中的要點包括NumPy,一個提供高級數學運算功能的基礎類庫,SciPy,一個專注於工具和演算法的可靠類庫,Sci-kit-learn,面向機器學習,還有Pandas,一套提供操作DataFrame功能的工具。
除了類庫之外,你也有必要知道Python是沒有公認的最好的集成開發環境(IDE)的,R語言也一樣。所以說,你需要親手試試不同的IDE再看看哪個更能滿足你的要求。開始時建議使用IPython Notebook,Rodeo和Spyder。和各種各樣的IDE一樣,Python也提供各種各樣的數據可視化庫,比如說Pygal,Bokeh和Seaborn。這些數據可視化工具中最必不可少的就是Matplotlib,一個簡單且有效的數值繪圖類庫。
所有的這些庫都包括在了Anaconda裡面,所以下載了之後,你就可以研究一下看看哪些工具組合更能滿足你的需要。用Python進行數據分析時你會犯很多錯誤,所以得小心一點。一旦你熟悉了安裝設置和每種工具後,你會發現Python是目前市面上用於大數據分析的最棒的平台之一。
希望能幫到你!

② Python大數據, 一些簡單的操作

#coding:utf-8
#file: FileSplit.py

import os,os.path,time

def FileSplit(sourceFile, targetFolder):
sFile = open(sourceFile, 'r')
number = 100000 #每個小文件中保存100000條數據
dataLine = sFile.readline()
tempData = [] #緩存列表
fileNum = 1
if not os.path.isdir(targetFolder): #如果目標目錄不存在,則創建
os.mkdir(targetFolder)
while dataLine: #有數據
for row in range(number):
tempData.append(dataLine) #將一行數據添加到列表中
dataLine = sFile.readline()
if not dataLine :
break
tFilename = os.path.join(targetFolder,os.path.split(sourceFile)[1] + str(fileNum) + ".txt")
tFile = open(tFilename, 'a+') #創建小文件
tFile.writelines(tempData) #將列表保存到文件中
tFile.close()
tempData = [] #清空緩存列表
print(tFilename + " 創建於: " + str(time.ctime()))
fileNum += 1 #文件編號

sFile.close()

if __name__ == "__main__" :
FileSplit("access.log","access")
#coding:utf-8
#file: Map.py

import os,os.path,re

def Map(sourceFile, targetFolder):
sFile = open(sourceFile, 'r')
dataLine = sFile.readline()
tempData = {} #緩存列表
if not os.path.isdir(targetFolder): #如果目標目錄不存在,則創建
os.mkdir(targetFolder)
while dataLine: #有數據
p_re = re.compile(r'(GET|POST)\s(.*?)\sHTTP/1.[01]',re.IGNORECASE) #用正則表達式解析數據
match = p_re.findall(dataLine)
if match:
visitUrl = match[0][1]
if visitUrl in tempData:
tempData[visitUrl] += 1
else:
tempData[visitUrl] = 1
dataLine = sFile.readline() #讀入下一行數據

sFile.close()

tList = []
for key,value in sorted(tempData.items(),key = lambda k:k[1],reverse = True):
tList.append(key + " " + str(value) + '\n')

tFilename = os.path.join(targetFolder,os.path.split(sourceFile)[1] + "_map.txt")
tFile = open(tFilename, 'a+') #創建小文件
tFile.writelines(tList) #將列表保存到文件中
tFile.close()

if __name__ == "__main__" :
Map("access\\access.log1.txt","access")
Map("access\\access.log2.txt","access")
Map("access\\access.log3.txt","access")
#coding:utf-8
#file: Rece.py

import os,os.path,re

def Rece(sourceFolder, targetFile):
tempData = {} #緩存列表
p_re = re.compile(r'(.*?)(\d{1,}$)',re.IGNORECASE) #用正則表達式解析數據
for root,dirs,files in os.walk(sourceFolder):
for fil in files:
if fil.endswith('_map.txt'): #是rece文件
sFile = open(os.path.abspath(os.path.join(root,fil)), 'r')
dataLine = sFile.readline()

while dataLine: #有數據
subdata = p_re.findall(dataLine) #用空格分割數據
#print(subdata[0][0]," ",subdata[0][1])
if subdata[0][0] in tempData:
tempData[subdata[0][0]] += int(subdata[0][1])
else:
tempData[subdata[0][0]] = int(subdata[0][1])
dataLine = sFile.readline() #讀入下一行數據

sFile.close()

tList = []
for key,value in sorted(tempData.items(),key = lambda k:k[1],reverse = True):
tList.append(key + " " + str(value) + '\n')

tFilename = os.path.join(sourceFolder,targetFile + "_rece.txt")
tFile = open(tFilename, 'a+') #創建小文件
tFile.writelines(tList) #將列表保存到文件中
tFile.close()

if __name__ == "__main__" :
Rece("access","access")

③ Python做大數據,都需要學習什麼,比如哪些框架,庫等!人工智慧呢請盡量詳細點!

階段一、人工智慧篇之Python核心
1、Python掃盲
2、面向對象編程基礎
3、變數和基本數據類型
4、Python機器學習類庫
5、Python控制語句與函數
6.、Python資料庫操作+正則表達式
7、Lambda表達式、裝飾器和Python模塊化開發
階段二、人工智慧篇之資料庫交互技術
1、初識MySQL資料庫
2、創建MySQL資料庫和表
3、MySQL資料庫數據管理
4、使用事務保證數據完整性
5、使用DQL命令查詢數據
6、創建和使用索引
7、MySQL資料庫備份和恢復
階段三、人工智慧篇之前端特效
1、HTML+CSS
2、Java
3、jQuery
階段四、人工智慧篇之Python高級應用
1、Python開發
2、資料庫應用程序開發
3、Python Web設計
4、存儲模型設計
5、智聯招聘爬蟲
6、附加:基礎python爬蟲庫
階段五、人工智慧篇之人工智慧機器學習篇
1、數學基礎
2、高等數學必知必會
3、Numpy前導介紹
4、Pandas前導課程
5、機器學習
階段六、人工智慧篇之人工智慧項目實戰
1、人臉性別和年齡識別原理
2、CTR廣告點擊量預測
3、DQN+遺傳演算法
4、圖像檢索系統
5、NLP閱讀理解
階段七、人工智慧篇之人工智慧項目實戰篇
1、基於Python數據分析與機器學習案例實戰教程
2、基於人工智慧與深度學習的項目實戰
3、分布式搜索引擎ElasticSearch開發
4、AI法律咨詢大數據分析與服務智能推薦項目
5、電商大數據情感分析與AI推斷實戰項目
6、AI大數據互聯網電影智能推薦

④ 利用Python分析處理數據。學校大數據課程,十幾年第一次開,有沒有精通計算機的哥哥姐姐幫助一下。

想要系統學習數據分析,建議一定要看的數據分析聖經《利用python進行數據分析》,這本書有理論有實踐,深入淺出,層層遞進,適合剛入門的數據分析小白,或者還有另外一本《python機器學習基礎教程》,也是比較入門級的,不過更偏向於機器學習的方向,但是也是涉及比較基礎的內容,可以作為進階來學習。手打不容易,以上回答如有幫助請採納,謝謝!

⑤ python大數據挖掘系列之基礎知識入門 知識整理(入門教程含源碼

Python在大數據行業非常火爆近兩年,as a pythonic,所以也得涉足下大數據分析,下面就聊聊它們。

Python數據分析與挖掘技術概述

所謂數據分析,即對已知的數據進行分析,然後提取出一些有價值的信息,比如統計平均數,標准差等信息,數據分析的數據量可能不會太大,而數據挖掘,是指對大量的數據進行分析與挖倔,得到一些未知的,有價值的信息等,比如從網站的用戶和用戶行為中挖掘出用戶的潛在需求信息,從而對網站進行改善等。
數據分析與數據挖掘密不可分,數據挖掘是對數據分析的提升。數據挖掘技術可以幫助我們更好的發現事物之間的規律。所以我們可以利用數據挖掘技術可以幫助我們更好的發現事物之間的規律。比如發掘用戶潛在需求,實現信息的個性化推送,發現疾病與病狀甚至病與葯物之間的規律等。

預先善其事必先利其器

我們首先聊聊數據分析的模塊有哪些:

下面就說說這些模塊的基礎使用。

numpy模塊安裝與使用

安裝:
下載地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/
我這里下載的包是1.11.3版本,地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/f9r7rmd8/numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl
下載好後,使用pip install "numpy-1.11.3+mkl-cp35-cp35m-win_amd64.whl"
安裝的numpy版本一定要是帶mkl版本的,這樣能夠更好支持numpy

numpy簡單使用

生成隨機數

主要使用numpy下的random方法。

pandas

使用 pip install pandas 即可

直接上代碼:
下面看看pandas輸出的結果, 這一行的數字第幾列,第一列的數字是行數,定位一個通過第一行,第幾列來定位:

常用方法如下:

下面看看pandas對數據的統計,下面就說說每一行的信息

轉置功能:把行數轉換為列數,把列數轉換為行數,如下所示:

通過pandas導入數據

pandas支持多種輸入格式,我這里就簡單羅列日常生活最常用的幾種,對於更多的輸入方式可以查看源碼後者官網。

CSV文件

csv文件導入後顯示輸出的話,是按照csv文件默認的行輸出的,有多少列就輸出多少列,比如我有五列數據,那麼它就在prinit輸出結果的時候,就顯示五列

excel表格

依賴於xlrd模塊,請安裝它。
老樣子,原滋原味的輸出顯示excel本來的結果,只不過在每一行的開頭加上了一個行數

讀取SQL

依賴於PyMySQL,所以需要安裝它。pandas把sql作為輸入的時候,需要制定兩個參數,第一個是sql語句,第二個是sql連接實例。

讀取HTML

依賴於lxml模塊,請安裝它。
對於HTTPS的網頁,依賴於BeautifulSoup4,html5lib模塊。
讀取HTML只會讀取HTML里的表格,也就是只讀取

顯示的是時候是通過python的列表展示,同時添加了行與列的標識

讀取txt文件

輸出顯示的時候同時添加了行與列的標識

scipy

安裝方法是先下載whl格式文件,然後通過pip install 「包名」 安裝。whl包下載地址是:http://www.lfd.uci.e/~gohlke/pythonlibs/f9r7rmd8/scipy-0.18.1-cp35-cp35m-win_amd64.whl

matplotlib 數據可視化分析

我們安裝這個模塊直接使用pip install即可。不需要提前下載whl後通過 pip install安裝。

下面請看代碼:

下面說說修改圖的樣式

關於圖形類型,有下面幾種:

關於顏色,有下面幾種:

關於形狀,有下面幾種:

我們還可以對圖稍作修改,添加一些樣式,下面修改圓點圖為紅色的點,代碼如下:

我們還可以畫虛線圖,代碼如下所示:

還可以給圖添加上標題,x,y軸的標簽,代碼如下所示

直方圖

利用直方圖能夠很好的顯示每一段的數據。下面使用隨機數做一個直方圖。

Y軸為出現的次數,X軸為這個數的值(或者是范圍)

還可以指定直方圖類型通過histtype參數:

圖形區別語言無法描述很詳細,大家可以自信嘗試。

舉個例子:

子圖功能

什麼是子圖功能呢?子圖就是在一個大的畫板裡面能夠顯示多張小圖,每個一小圖為大畫板的子圖。
我們知道生成一個圖是使用plot功能,子圖就是subplog。代碼操作如下:

我們現在可以通過一堆數據來繪圖,根據圖能夠很容易的發現異常。下面我們就通過一個csv文件來實踐下,這個csv文件是某個網站的文章閱讀數與評論數。


先說說這個csv的文件結構,第一列是序號,第二列是每篇文章的URL,第三列每篇文章的閱讀數,第四列是每篇評論數。


我們的需求就是把評論數作為Y軸,閱讀數作為X軸,所以我們需要獲取第三列和第四列的數據。我們知道獲取數據的方法是通過pandas的values方法來獲取某一行的值,在對這一行的值做切片處理,獲取下標為3(閱讀數)和4(評論數)的值,但是,這里只是一行的值,我們需要是這個csv文件下的所有評論數和閱讀數,那怎麼辦?聰明的你會說,我自定義2個列表,我遍歷下這個csv文件,把閱讀數和評論數分別添加到對應的列表裡,這不就行了嘛。呵呵,其實有一個更快捷的方法,那麼就是使用T轉置方法,這樣再通過values方法,就能直接獲取這一評論數和閱讀數了,此時在交給你matplotlib里的pylab方法來作圖,那麼就OK了。了解思路後,那麼就寫吧。

下面看看代碼:

閱讀全文

與python大數據繪圖相關的資料

熱點內容
如何看漫威漫畫app 瀏覽:789
安卓手機如何按拼音排布app 瀏覽:721
java中exceptionin 瀏覽:882
java131 瀏覽:868
學英語不登錄的app哪個最好 瀏覽:299
安卓的後台運行怎麼設置 瀏覽:135
如何撰寫論文摘要以及編譯sci 瀏覽:416
安卓如何使用推特貼吧 瀏覽:429
怎樣避免程序員入獄 瀏覽:856
蘋果方塊消除安卓叫什麼 瀏覽:535
安卓世界征服者2怎麼聯機 瀏覽:297
國企招的程序員 瀏覽:969
哪個app可以看watch 瀏覽:518
dns備用什麼伺服器 瀏覽:1002
中達優控觸摸屏編譯失敗 瀏覽:80
上海科納壓縮機 瀏覽:680
python工時系統 瀏覽:551
查好友ip命令 瀏覽:118
通達信python量化交易 瀏覽:506
cnc編程工程師自我評價 瀏覽:133