導航:首頁 > 編程語言 > python例子教學

python例子教學

發布時間:2023-06-14 02:32:12

1. python高難度代碼例子、Python最復雜代碼例子

#IT教育# #IT# #程序員# #人工智慧#

最近學習pytorch,看到下面的Python高難度代碼例子和Python最復雜代碼例子:

from google.colab import output as colab_output
from base64 import b64decode
from io import BytesIO
from pyb import AudioSegment

RECORD = """
const sleep = time => new Promise(resolve => setTimeout(resolve, time))
const b2text = blob => new Promise(resolve => {
const reader = new FileReader()
reader.onloadend = e => resolve(e.srcElement.result)
reader.readAsDataURL(blob)
})
var record = time => new Promise(async resolve => {
stream = await navigator.mediaDevices.getUserMedia({ audio: true })
recorder = new MediaRecorder(stream)
chunks = []
recorder.ondataavailable = e => chunks.push(e.data)
recorder.start()
await sleep(time)
recorder.onstop = async ()=>{
blob = new Blob(chunks)
text = await b2text(blob)
resolve(text)
}
recorder.stop()
})
"""

def record(seconds=1):
display(ipd.javascript(RECORD))
print(f"Recording started for {seconds} seconds.")
s = colab_output.eval_js("record(%d)" % (seconds * 1000))
print("Recording ended.")
b = b64decode(s.split(",")[1])

fileformat = "wav"
filename = f"_audio.{fileformat}"
AudioSegment.from_file(BytesIO(b)).export(filename, format=fileformat)
return torchaudio.load(filename)

waveform, sample_rate = record()
print(f"Predicted: {predict(waveform)}.")
ipd.Audio(waveform.numpy(), rate=sample_rate)

js 的Promise函數對象編程,字元串javascript函數對象,IPython解釋js對象,解釋結果和python代碼結合,IPython Shell顯示非字元串數據,python音頻使用IPython簡單調用。

復雜Python模塊下的多知識點結合代碼,是Python高難度代碼的體現。

Js的Promise理解為動態函數,比C++的類成員函數和全局函數這類靜態形式的函數處理靈活,不過初學者理解起來麻煩。代碼里sleep和b2text都代表一些處理函數,也就是幾行代碼,而不是數據。通常來講,變數一般代表數據,但是這里代表了指令。

2. 萬字干貨,Python語法大合集,一篇文章帶你入門

這份資料非常純粹,只有Python的基礎語法,專門針對想要學習Python的小白。

Python中用#表示單行注釋,#之後的同行的內容都會被注釋掉。

使用三個連續的雙引號表示多行注釋,兩個多行注釋標識之間內容會被視作是注釋。

Python當中的數字定義和其他語言一樣:

我們分別使用+, -, *, /表示加減乘除四則運算符。

這里要注意的是,在Python2當中,10/3這個操作會得到3,而不是3.33333。因為除數和被除數都是整數,所以Python會自動執行整數的計算,幫我們把得到的商取整。如果是10.0 / 3,就會得到3.33333。目前Python2已經不再維護了,可以不用關心其中的細節。

但問題是Python是一個 弱類型 的語言,如果我們在一個函數當中得到兩個變數,是無法直接判斷它們的類型的。這就導致了同樣的計算符可能會得到不同的結果,這非常蛋疼。以至於程序員在運算除法的時候,往往都需要手工加上類型轉化符,將被除數轉成浮點數。

在Python3當中撥亂反正,修正了這個問題,即使是兩個整數相除,並且可以整除的情況下,得到的結果也一定是浮點數。

如果我們想要得到整數,我們可以這么操作:

兩個除號表示 取整除 ,Python會為我們保留去除余數的結果。

除了取整除操作之外還有取余數操作,數學上稱為取模,Python中用%表示。

Python中支持 乘方運算 ,我們可以不用調用額外的函數,而使用**符號來完成:

當運算比較復雜的時候,我們可以用括弧來強制改變運算順序。

Python中用首字母大寫的True和False表示真和假。

用and表示與操作,or表示或操作,not表示非操作。而不是C++或者是Java當中的&&, || 和!。

在Python底層, True和False其實是1和0 ,所以如果我們執行以下操作,是不會報錯的,但是在邏輯上毫無意義。

我們用==判斷相等的操作,可以看出來True==1, False == 0.

我們要小心Python當中的bool()這個函數,它並不是轉成bool類型的意思。如果我們執行這個函數,那麼 只有0會被視作是False,其他所有數值都是True

Python中用==判斷相等,>表示大於,>=表示大於等於, <表示小於,<=表示小於等於,!=表示不等。

我們可以用and和or拼裝各個邏輯運算:

注意not,and,or之間的優先順序,其中not > and > or。如果分不清楚的話,可以用括弧強行改變運行順序。

關於list的判斷,我們常用的判斷有兩種,一種是剛才介紹的==,還有一種是is。我們有時候也會簡單實用is來判斷,那麼這兩者有什麼區別呢?我們來看下面的例子:

Python是全引用的語言,其中的對象都使用引用來表示。is判斷的就是 兩個引用是否指向同一個對象 ,而==則是判斷兩個引用指向的具體內容是否相等。舉個例子,如果我們把引用比喻成地址的話,is就是判斷兩個變數的是否指向同一個地址,比如說都是沿河東路XX號。而==則是判斷這兩個地址的收件人是否都叫張三。

顯然,住在同一個地址的人一定都叫張三,但是住在不同地址的兩個人也可以都叫張三,也可以叫不同的名字。所以如果a is b,那麼a == b一定成立,反之則不然。

Python當中對字元串的限制比較松, 雙引號和單引號都可以表示字元串 ,看個人喜好使用單引號或者是雙引號。我個人比較喜歡單引號,因為寫起來方便。

字元串也支持+操作,表示兩個字元串相連。除此之外,我們把兩個字元串寫在一起,即使沒有+,Python也會為我們拼接:

我們可以使用[]來查找字元串當中某個位置的字元,用 len 來計算字元串的長度。

我們可以在字元串前面 加上f表示格式操作 ,並且在格式操作當中也支持運算,比如可以嵌套上len函數等。不過要注意,只有Python3.6以上的版本支持f操作。

最後是None的判斷,在Python當中None也是一個對象, 所有為None的變數都會指向這個對象 。根據我們前面所說的,既然所有的None都指向同一個地址,我們需要判斷一個變數是否是None的時候,可以使用is來進行判斷,當然用==也是可以的,不過我們通常使用is。

理解了None之後,我們再回到之前介紹過的bool()函數,它的用途其實就是判斷值是否是空。所有類型的 默認空值會被返回False ,否則都是True。比如0,"",[], {}, ()等。

除了上面這些值以外的所有值傳入都會得到True。

Python當中的標准輸入輸出是 input和print

print會輸出一個字元串,如果傳入的不是字元串會自動調用__str__方法轉成字元串進行輸出。 默認輸出會自動換行 ,如果想要以不同的字元結尾代替換行,可以傳入end參數:

使用input時,Python會在命令行接收一行字元串作為輸入。可以在input當中傳入字元串,會被當成提示輸出:

Python支持 三元表達式 ,但是語法和C++不同,使用if else結構,寫成:

上段代碼等價於:

Python中用[]表示空的list,我們也可以直接在其中填充元素進行初始化:

使用append和pop可以在list的末尾插入或者刪除元素:

list可以通過[]加上下標訪問指定位置的元素,如果是負數,則表示 倒序訪問 。-1表示最後一個元素,-2表示倒數第二個,以此類推。如果訪問的元素超過數組長度,則會出發 IndexError 的錯誤。

list支持切片操作,所謂的切片則是從原list當中 拷貝 出指定的一段。我們用start: end的格式來獲取切片,注意,這是一個 左閉右開區間 。如果留空表示全部獲取,我們也可以額外再加入一個參數表示步長,比如[1:5:2]表示從1號位置開始,步長為2獲取元素。得到的結果為[1, 3]。如果步長設置成-1則代表反向遍歷。

如果我們要指定一段區間倒序,則前面的start和end也需要反過來,例如我想要獲取[3: 6]區間的倒序,應該寫成[6:3:-1]。

只寫一個:,表示全部拷貝,如果用is判斷拷貝前後的list會得到False。可以使用del刪除指定位置的元素,或者可以使用remove方法。

insert方法可以 指定位置插入元素 ,index方法可以查詢某個元素第一次出現的下標。

list可以進行加法運算,兩個list相加表示list當中的元素合並。 等價於使用extend 方法:

我們想要判斷元素是否在list中出現,可以使用 in關鍵字 ,通過使用len計算list的長度:

tuple和list非常接近,tuple通過()初始化。和list不同, tuple是不可變對象 。也就是說tuple一旦生成不可以改變。如果我們修改tuple,會引發TypeError異常。

由於小括弧是有改變優先順序的含義,所以我們定義單個元素的tuple, 末尾必須加上逗號 ,否則會被當成是單個元素:

tuple支持list當中絕大部分操作:

我們可以用多個變數來解壓一個tuple:

解釋一下這行代碼:

我們在b的前面加上了星號, 表示這是一個list 。所以Python會在將其他變數對應上值的情況下,將剩下的元素都賦值給b。

補充一點,tuple本身雖然是不可變的,但是 tuple當中的可變元素是可以改變的 。比如我們有這樣一個tuple:

我們雖然不能往a當中添加或者刪除元素,但是a當中含有一個list,我們可以改變這個list類型的元素,這並不會觸發tuple的異常:

dict也是Python當中經常使用的容器,它等價於C++當中的map,即 存儲key和value的鍵值對 。我們用{}表示一個dict,用:分隔key和value。

。我們用{}表示一個dict,用:分隔key和value。

dict的key必須為不可變對象,所以 list、set和dict不可以作為另一個dict的key ,否則會拋出異常:

我們同樣用[]查找dict當中的元素,我們傳入key,獲得value,等價於get方法。

我們可以call dict當中的keys和values方法,獲取dict當中的所有key和value的集合,會得到一個list。在Python3.7以下版本當中,返回的結果的順序可能和插入順序不同,在Python3.7及以上版本中,Python會保證返回的順序和插入順序一致:

我們也可以用in判斷一個key是否在dict當中,注意只能判斷key。

如果使用[]查找不存在的key,會引發KeyError的異常。如果使用 get方法則不會引起異常,只會得到一個None

setdefault方法可以 為不存在的key 插入一個value,如果key已經存在,則不會覆蓋它:

我們可以使用update方法用另外一個dict來更新當前dict,比如a.update(b)。對於a和b交集的key會被b覆蓋,a當中不存在的key會被插入進來:

我們一樣可以使用del刪除dict當中的元素,同樣只能傳入key。

Python3.5以上的版本支持使用**來解壓一個dict:

set是用來存儲 不重復元素 的容器,當中的元素都是不同的,相同的元素會被刪除。我們可以通過set(),或者通過{}來進行初始化。注意當我們使用{}的時候,必須要傳入數據,否則Python會將它和dict弄混。

set當中的元素也必須是不可變對象,因此list不能傳入set。

可以調用add方法為set插入元素:

set還可以被認為是集合,所以它還支持一些集合交叉並補的操作。

set還支持 超集和子集的判斷 ,我們可以用大於等於和小於等於號判斷一個set是不是另一個的超集或子集:

和dict一樣,我們可以使用in判斷元素在不在set當中。用可以拷貝一個set。

Python當中的判斷語句非常簡單,並且Python不支持switch,所以即使是多個條件,我們也只能 羅列if-else

我們可以用in來循環迭代一個list當中的內容,這也是Python當中基本的循環方式。

如果我們要循環一個范圍,可以使用range。range加上一個參數表示從0開始的序列,比如range(10),表示[0, 10)區間內的所有整數:

如果我們傳入兩個參數,則 代表迭代區間的首尾

如果我們傳入第三個元素,表示每次 循環變數自增的步長

如果使用enumerate函數,可以 同時迭代一個list的下標和元素

while循環和C++類似,當條件為True時執行,為false時退出。並且判斷條件不需要加上括弧:

Python當中使用 try和except捕獲異常 ,我們可以在except後面限制異常的類型。如果有多個類型可以寫多個except,還可以使用else語句表示其他所有的類型。finally語句內的語法 無論是否會觸發異常都必定執行

在Python當中我們經常會使用資源,最常見的就是open打開一個文件。我們 打開了文件句柄就一定要關閉 ,但是如果我們手動來編碼,經常會忘記執行close操作。並且如果文件異常,還會觸發異常。這個時候我們可以使用with語句來代替這部分處理,使用with會 自動在with塊執行結束或者是觸發異常時關閉打開的資源

以下是with的幾種用法和功能:

凡是可以使用in語句來迭代的對象都叫做 可迭代對象 ,它和迭代器不是一個含義。這里只有可迭代對象的介紹,想要了解迭代器的具體內容,請移步傳送門:

Python——五分鍾帶你弄懂迭代器與生成器,夯實代碼能力

當我們調用dict當中的keys方法的時候,返回的結果就是一個可迭代對象。

我們 不能使用下標來訪問 可迭代對象,但我們可以用iter將它轉化成迭代器,使用next關鍵字來獲取下一個元素。也可以將它轉化成list類型,變成一個list。

使用def關鍵字來定義函數,我們在傳參的時候如果指定函數內的參數名, 可以不按照函數定義的順序 傳參:

可以在參數名之前加上*表示任意長度的參數,參數會被轉化成list:

也可以指定任意長度的關鍵字參數,在參數前加上**表示接受一個dict:

當然我們也可以兩個都用上,這樣可以接受任何參數:

傳入參數的時候我們也可以使用*和**來解壓list或者是dict:

Python中的參數 可以返回多個值

函數內部定義的變數即使和全局變數重名,也 不會覆蓋全局變數的值 。想要在函數內部使用全局變數,需要加上 global 關鍵字,表示這是一個全局變數:

Python支持 函數式編程 ,我們可以在一個函數內部返回一個函數:

Python中可以使用lambda表示 匿名函數 ,使用:作為分隔,:前面表示匿名函數的參數,:後面的是函數的返回值:

我們還可以將函數作為參數使用map和filter,實現元素的批量處理和過濾。關於Python中map、rece和filter的使用,具體可以查看之前的文章:

五分鍾帶你了解map、rece和filter

我們還可以結合循環和判斷語來給list或者是dict進行初始化:

使用 import語句引入一個Python模塊 ,我們可以用.來訪問模塊中的函數或者是類。

我們也可以使用from import的語句,單獨引入模塊內的函數或者是類,而不再需要寫出完整路徑。使用from import *可以引入模塊內所有內容(不推薦這么干)

可以使用as給模塊內的方法或者類起別名:

我們可以使用dir查看我們用的模塊的路徑:

這么做的原因是如果我們當前的路徑下也有一個叫做math的Python文件,那麼 會覆蓋系統自帶的math的模塊 。這是尤其需要注意的,不小心會導致很多奇怪的bug。

我們來看一個完整的類,相關的介紹都在注釋當中

以上內容的詳細介紹之前也有過相關文章,可以查看:

Python—— slots ,property和對象命名規范

下面我們來看看Python當中類的使用:


這里解釋一下,實例和對象可以理解成一個概念,實例的英文是instance,對象的英文是object。都是指類經過實例化之後得到的對象。


繼承可以讓子類 繼承父類的變數以及方法 ,並且我們還可以在子類當中指定一些屬於自己的特性,並且還可以重寫父類的一些方法。一般我們會將不同的類放在不同的文件當中,使用import引入,一樣可以實現繼承。

我們創建一個蝙蝠類:

我們再創建一個蝙蝠俠的類,同時繼承Superhero和Bat:

執行這個類:

我們可以通過yield關鍵字創建一個生成器,每次我們調用的時候執行到yield關鍵字處則停止。下次再次調用則還是從yield處開始往下執行:

除了yield之外,我們還可以使用()小括弧來生成一個生成器:

關於生成器和迭代器更多的內容,可以查看下面這篇文章:

五分鍾帶你弄懂迭代器與生成器,夯實代碼能力

我們引入functools當中的wraps之後,可以創建一個裝飾器。裝飾器可以在不修改函數內部代碼的前提下,在外麵包裝一層其他的邏輯:

裝飾器之前也有專門的文章詳細介紹,可以移步下面的傳送門:

一文搞定Python裝飾器,看完面試不再慌

不知道有多少小夥伴可以看到結束,原作者的確非常厲害,把Python的基本操作基本上都囊括在裡面了。如果都能讀懂並且理解的話,那麼Python這門語言就算是入門了。


如果你之前就有其他語言的語言基礎,我想本文讀完應該不用30分鍾。當然在30分鍾內學會一門語言是不可能的,也不是我所提倡的。但至少通過本文我們可以做到熟悉Python的語法,知道大概有哪些操作,剩下的就要我們親自去寫代碼的時候去體會和運用了。

根據我的經驗,在學習一門新語言的前期,不停地查閱資料是免不了的。希望本文可以作為你在使用Python時候的查閱文檔。

最後,我這里有各種免費的編程類資料,有需要的及時私聊我,回復"學習",分享給大家,正在發放中............





3. python入門教程

Python語言是一種典型的腳本語言,簡潔,語法約束少,接近人類語言。有豐富的數據結構,例如列表、字典、集合等。具有可移植性,支持面向過程和面向對象編程,並且開源。
下載安裝:從python官網下載開發和運行環境程序。本例下載python-3.3.3.amd64的安裝包,並安裝。
開發工具:window系統中,python有多種開發工具,比如,一、直接在cmd命令窗口執行,但此種僅能單條語句執行,不能運行完整的程序。二、python自帶的集成開發環境,可通過開始——所有程序——python3.3——IDLE(Python GUI)啟動。三、其他集成開發環境,如PythonWin等,有編輯和調試能力,還實現了MFC類庫存的包裝。
本例中,使用python自帶的開發環境。File—New File,新建py文檔,編寫程序,保存。Run——Run mole,可得到運行結果。
封裝性:可以把屬性、方法結合在一起,不可以直接訪問對象的屬性,僅能通過介面與對象發生聯系。以下把方法和屬性封裝成了一個類。
構造器:python有3種類型的構造器,且一個類中僅可以定義一個構造器,若多個,則以最後為准。1.若不聲明,則默認為一個沒有任何操作的特殊的__init__方法,__init__(self),此時可通過obj = my_class()聲明實例。 2.自聲明__init__構造器,會覆蓋默認的,且可以更新類的數據屬性。3.構造器方法__new__(),用於不可變內置類型派生,不能通過實例訪問屬性,僅能通過類訪問。
繼承性:python支持多繼承,且子類繼承了父類的方法和屬性。若子類中有和父類相同名稱的方法,則子類會覆蓋(Override)父類方法。父類方法依舊可以訪問。
數據結構:有豐富的數據結構,例如列表、字典、集合等。本例簡單介紹字典的使用。字典是鍵值對的無序集合,是可變對象。鍵在字典中是唯一的且必須是不可變對象。值可以是可變對象或不可變對象。以下例子對python字典的定義、訪問、更新等的操作。
文件的讀寫:python系統提供open()函數建立文件對象,並打開要讀寫的文件。可對文件進行讀,寫,若不需要時,需關閉文件,釋放系統資源。
其他:python的數據類型,如數字類型、字元串類型等。運算符、程序控制結構、函數、異常處理等內容。一些基本的用法,可在平時的使用中鞏固加強。若熟知java,python上手會很快。

4. python編程例子有哪些

python編程經典例子:

1、畫愛心表白、圖形都是由一系列的點(X,Y)構成的曲線,由於X,Y滿足一定的關系,所以就可以建立模型,建立表達式expression,當滿足時,兩個for循環(for X in range;for Y in range)就會每行每列的列印。

(4)python例子教學擴展閱讀:

Python的設計目標之一是讓代碼具備高度的可閱讀性。它設計時盡量使用其它語言經常使用的標點符號和英文單字,讓代碼看起來整潔美觀。它不像其他的靜態語言如C、Pascal那樣需要重復書寫聲明語句,也不像它們的語法那樣經常有特殊情況和意外。

Python開發者有意讓違反了縮進規則的程序不能通過編譯,以此來強製程序員養成良好的編程習慣。並且Python語言利用縮進表示語句塊的開始和退出,而非使用花括弧或者某種關鍵字。增加縮進表示語句塊的開始,而減少縮進則表示語句塊的退出,縮進成為了語法的一部分。

5. 怎樣用Python語言編一個小程序

編寫 Python 小程序的皮冊方法燃握宏主要分為以下幾步:

安裝 Python:在編寫 Python 程序之前,需要在計算機上安裝 Python。Python 官網提供了下載安裝程序皮辯的鏈接,可以根據操作系統版本下載安裝程序。

編寫代碼:可以使用任何文本編輯器編寫 Python 代碼。代碼的具體內容根據程序的需求來決定,可以包括各種 Python 原生語法、內置函數、第三方庫等等。

運行程序:可以使用 Python 解釋器來運行 Python 程序。在終端或命令行界面輸入 python 文件名.py 即可執行程序。

下面是一個簡單的示常式序:

6. python基礎教程 10-11例子如何執行

2020年最新Python零基礎教程(高清視頻)網路網盤

鏈接:

提取碼: 5kid 復制這段內容後打開網路網盤手機App,操作更方便哦

若資源有問題歡迎追問~


7. python入門實例教程

python入門實例教程!
步驟1:這里我將簡單告訴大家一個用python軟體編寫的一個關於貨物售價折扣方面的一個計算程序,首先打開python軟體。
步驟2:進入python後,會出現如圖所示界面,按照圖中箭頭指示,先選擇File選項,然後在下拉菜單中選擇New file選項。
步驟3:選擇完畢後,會出現一個新的界面,如圖箭頭和紅色框指示。
步驟4:進入這個新的界面,在裡面輸入自己想編輯的程序,如圖所示是我自己編寫的一個關於貨物售價折扣方面的一個簡單的計算程序。
步驟5:程序輸入完畢後,按照圖中箭頭和紅色框指示,先選擇Run選項,然後在下拉菜單中選擇Run Mole(註:除此方法外還可以點擊鍵盤F5)。
步驟6:此時會在原界面出現如圖所示的字樣,這是因為我編寫程序編輯好的,此時你可以輸入一個數字,然後回車,它又會讓你輸入一個折扣,輸入完即可得出最後售價結果。
步驟7:如圖所示,這里我輸入的原價是10,折扣是0.2,故此系統根據我編寫的程序計算除了打折後的價格為2。

8. 建議收藏!10 種 Python 聚類演算法完整操作示例

聚類或聚類分析是無監督學習問題。它通常被用作數據分析技術,用於發現數據中的有趣模式,例如基於其行為的客戶群。有許多聚類演算法可供選擇,對於所有情況,沒有單一的最佳聚類演算法。相反,最好探索一系列聚類演算法以及每種演算法的不同配置。在本教程中,你將發現如何在 python 中安裝和使用頂級聚類演算法。完成本教程後,你將知道:

聚類分析,即聚類,是一項無監督的機器學習任務。它包括自動發現數據中的自然分組。與監督學習(類似預測建模)不同,聚類演算法只解釋輸入數據,並在特徵空間中找到自然組或群集。

群集通常是特徵空間中的密度區域,其中來自域的示例(觀測或數據行)比其他群集更接近群集。群集可以具有作為樣本或點特徵空間的中心(質心),並且可以具有邊界或范圍。

聚類可以作為數據分析活動提供幫助,以便了解更多關於問題域的信息,即所謂的模式發現或知識發現。例如:

聚類還可用作特徵工程的類型,其中現有的和新的示例可被映射並標記為屬於數據中所標識的群集之一。雖然確實存在許多特定於群集的定量措施,但是對所識別的群集的評估是主觀的,並且可能需要領域專家。通常,聚類演算法在人工合成數據集上與預先定義的群集進行學術比較,預計演算法會發現這些群集。

有許多類型的聚類演算法。許多演算法在特徵空間中的示例之間使用相似度或距離度量,以發現密集的觀測區域。因此,在使用聚類演算法之前,擴展數據通常是良好的實踐。

一些聚類演算法要求您指定或猜測數據中要發現的群集的數量,而另一些演算法要求指定觀測之間的最小距離,其中示例可以被視為「關閉」或「連接」。因此,聚類分析是一個迭代過程,在該過程中,對所識別的群集的主觀評估被反饋回演算法配置的改變中,直到達到期望的或適當的結果。scikit-learn 庫提供了一套不同的聚類演算法供選擇。下面列出了10種比較流行的演算法:

每個演算法都提供了一種不同的方法來應對數據中發現自然組的挑戰。沒有最好的聚類演算法,也沒有簡單的方法來找到最好的演算法為您的數據沒有使用控制實驗。在本教程中,我們將回顧如何使用來自 scikit-learn 庫的這10個流行的聚類演算法中的每一個。這些示例將為您復制粘貼示例並在自己的數據上測試方法提供基礎。我們不會深入研究演算法如何工作的理論,也不會直接比較它們。讓我們深入研究一下。

在本節中,我們將回顧如何在 scikit-learn 中使用10個流行的聚類演算法。這包括一個擬合模型的例子和可視化結果的例子。這些示例用於將粘貼復制到您自己的項目中,並將方法應用於您自己的數據。

1.庫安裝

首先,讓我們安裝庫。不要跳過此步驟,因為你需要確保安裝了最新版本。你可以使用 pip Python 安裝程序安裝 scikit-learn 存儲庫,如下所示:

接下來,讓我們確認已經安裝了庫,並且您正在使用一個現代版本。運行以下腳本以輸出庫版本號。

運行該示例時,您應該看到以下版本號或更高版本。

2.聚類數據集

我們將使用 make _ classification ()函數創建一個測試二分類數據集。數據集將有1000個示例,每個類有兩個輸入要素和一個群集。這些群集在兩個維度上是可見的,因此我們可以用散點圖繪制數據,並通過指定的群集對圖中的點進行顏色繪制。這將有助於了解,至少在測試問題上,群集的識別能力如何。該測試問題中的群集基於多變數高斯,並非所有聚類演算法都能有效地識別這些類型的群集。因此,本教程中的結果不應用作比較一般方法的基礎。下面列出了創建和匯總合成聚類數據集的示例。

運行該示例將創建合成的聚類數據集,然後創建輸入數據的散點圖,其中點由類標簽(理想化的群集)著色。我們可以清楚地看到兩個不同的數據組在兩個維度,並希望一個自動的聚類演算法可以檢測這些分組。

已知聚類著色點的合成聚類數據集的散點圖接下來,我們可以開始查看應用於此數據集的聚類演算法的示例。我已經做了一些最小的嘗試來調整每個方法到數據集。3.親和力傳播親和力傳播包括找到一組最能概括數據的範例。

它是通過 AffinityPropagation 類實現的,要調整的主要配置是將「 阻尼 」設置為0.5到1,甚至可能是「首選項」。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,我無法取得良好的結果。

數據集的散點圖,具有使用親和力傳播識別的聚類

4.聚合聚類

聚合聚類涉及合並示例,直到達到所需的群集數量為止。它是層次聚類方法的更廣泛類的一部分,通過 AgglomerationClustering 類實現的,主要配置是「 n _ clusters 」集,這是對數據中的群集數量的估計,例如2。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以找到一個合理的分組。

使用聚集聚類識別出具有聚類的數據集的散點圖

5.BIRCHBIRCH

聚類( BIRCH 是平衡迭代減少的縮寫,聚類使用層次結構)包括構造一個樹狀結構,從中提取聚類質心。

它是通過 Birch 類實現的,主要配置是「 threshold 」和「 n _ clusters 」超參數,後者提供了群集數量的估計。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以找到一個很好的分組。

使用BIRCH聚類確定具有聚類的數據集的散點圖

6.DBSCANDBSCAN

聚類(其中 DBSCAN 是基於密度的空間聚類的雜訊應用程序)涉及在域中尋找高密度區域,並將其周圍的特徵空間區域擴展為群集。

它是通過 DBSCAN 類實現的,主要配置是「 eps 」和「 min _ samples 」超參數。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,盡管需要更多的調整,但是找到了合理的分組。

使用DBSCAN集群識別出具有集群的數據集的散點圖

7.K均值

K-均值聚類可以是最常見的聚類演算法,並涉及向群集分配示例,以盡量減少每個群集內的方差。

它是通過 K-均值類實現的,要優化的主要配置是「 n _ clusters 」超參數設置為數據中估計的群集數量。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以找到一個合理的分組,盡管每個維度中的不等等方差使得該方法不太適合該數據集。

使用K均值聚類識別出具有聚類的數據集的散點圖

8.Mini-Batch

K-均值Mini-Batch K-均值是 K-均值的修改版本,它使用小批量的樣本而不是整個數據集對群集質心進行更新,這可以使大數據集的更新速度更快,並且可能對統計雜訊更健壯。

它是通過 MiniBatchKMeans 類實現的,要優化的主配置是「 n _ clusters 」超參數,設置為數據中估計的群集數量。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,會找到與標准 K-均值演算法相當的結果。

帶有最小批次K均值聚類的聚類數據集的散點圖

9.均值漂移聚類

均值漂移聚類涉及到根據特徵空間中的實例密度來尋找和調整質心。

它是通過 MeanShift 類實現的,主要配置是「帶寬」超參數。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以在數據中找到一組合理的群集。

具有均值漂移聚類的聚類數據集散點圖

10.OPTICSOPTICS

聚類( OPTICS 短於訂購點數以標識聚類結構)是上述 DBSCAN 的修改版本。

它是通過 OPTICS 類實現的,主要配置是「 eps 」和「 min _ samples 」超參數。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,我無法在此數據集上獲得合理的結果。

使用OPTICS聚類確定具有聚類的數據集的散點圖

11.光譜聚類

光譜聚類是一類通用的聚類方法,取自線性線性代數。

它是通過 Spectral 聚類類實現的,而主要的 Spectral 聚類是一個由聚類方法組成的通用類,取自線性線性代數。要優化的是「 n _ clusters 」超參數,用於指定數據中的估計群集數量。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,找到了合理的集群。

使用光譜聚類聚類識別出具有聚類的數據集的散點圖

12.高斯混合模型

高斯混合模型總結了一個多變數概率密度函數,顧名思義就是混合了高斯概率分布。它是通過 Gaussian Mixture 類實現的,要優化的主要配置是「 n _ clusters 」超參數,用於指定數據中估計的群集數量。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,我們可以看到群集被完美地識別。這並不奇怪,因為數據集是作為 Gaussian 的混合生成的。

使用高斯混合聚類識別出具有聚類的數據集的散點圖

在本文中,你發現了如何在 python 中安裝和使用頂級聚類演算法。具體來說,你學到了:

閱讀全文

與python例子教學相關的資料

熱點內容
如何看漫威漫畫app 瀏覽:789
安卓手機如何按拼音排布app 瀏覽:721
java中exceptionin 瀏覽:882
java131 瀏覽:868
學英語不登錄的app哪個最好 瀏覽:299
安卓的後台運行怎麼設置 瀏覽:135
如何撰寫論文摘要以及編譯sci 瀏覽:416
安卓如何使用推特貼吧 瀏覽:429
怎樣避免程序員入獄 瀏覽:856
蘋果方塊消除安卓叫什麼 瀏覽:535
安卓世界征服者2怎麼聯機 瀏覽:297
國企招的程序員 瀏覽:969
哪個app可以看watch 瀏覽:518
dns備用什麼伺服器 瀏覽:1002
中達優控觸摸屏編譯失敗 瀏覽:80
上海科納壓縮機 瀏覽:680
python工時系統 瀏覽:551
查好友ip命令 瀏覽:118
通達信python量化交易 瀏覽:506
cnc編程工程師自我評價 瀏覽:133