導航:首頁 > 編程語言 > python12306圖片驗證碼

python12306圖片驗證碼

發布時間:2023-06-17 22:24:50

⑴ 用python如何直接獲取jsp生成的驗證碼圖片

你只需要正常請求圖片就行了,分析一下image的src,把它拼接成一個完整的URL去請求就好了,得到的有可能是BASE64編碼串,或者是文件,把它保存下來就可以了。

⑵ python爬取驗證碼圖片,遇到驗證碼src屬性為完整的網址應該怎麼做

爬蟲中手動輸入驗證碼方法無法獲取圖片src地址
驗證碼在html中圖片標簽內容:
<class=「verCodeImg」 src="/kaptcha.jpg?v=0.234724039578059" οnclick=「verCode(this)」>
< class=「verCodeImg」 src="/kaptcha.jpg?v=0.234724239578059" οnclick=「verCode(this)」>
可知獲取到驗證碼的src地址就能動態的獲得驗證碼
因為驗證碼是動態的!動態的!動態的!
用動態爬取網頁的方法:
要用到selenium庫
其實獲得了驗證碼的src地址,我還是沒能成功登陸
因為即使是相同的鏈接點進去,每一次刷新都會有不同的驗證碼
通過動態網頁打開是一張
解析src地址出來是另一張

⑶ python如何識別驗證碼

我們首先識別最簡單的一種驗證碼,即圖形驗證碼。這種驗證碼最早出現,現在也很常見,一般由4位字母或者數字組成。例如,中國知網的注冊頁面有類似的驗證碼,頁面如下所示:

表單中最後一項就是圖形驗證碼,我們必須完全正確輸入圖中的字元才可以完成注冊。

更多有關驗證碼的知識,可以參考這些文章:

Python3爬蟲進階:識別圖形驗證碼

Python3爬蟲進階:識別極驗滑動驗證碼

Python3爬蟲進階:識別點觸點選驗證碼

Python3爬蟲進階:識別微博宮格驗證碼

·本節目標以知網的驗證碼為例,講解利用OCR技術識別圖形驗證碼的方法。

·准備工作識別圖形驗證碼需要庫tesserocr,以mac安裝為例:在mac下,我們首先使用Homebrew安裝ImageMagick和tesseract庫: brew install imagemagickbrew install tesseract 接下來再安裝tesserocr即可:pip3 install tesserocr pillow這樣我們就完成了 tesserocr的安裝。

·獲取驗證碼為了便於實驗,我們先將驗證碼的圖片保存到本地。打開開發者工具,找到驗證碼元素。驗證碼元素是一張圖片,它的ser屬 性是CheckCode.aspk。所以我們直接打開如下鏈接就可以看到一個驗證碼,右鍵保存即可,將其命名為code.jpg:

這樣我們就得到一張驗證碼圖片,以供測試識別使用。

相關推薦:《Python教程》

識別測試

接下來新建一個項目,將驗證碼圖片放到項目根目錄下,用tesserocr庫識別該驗證碼,代碼如下所示:

這里我們新建了一個Image對戲那個,調用了tesserocr的image_to_text( )方法。傳入該Image對象即可完成識別,實現過程非常簡單,結果如下:

我們可以看到,識別的結果和實際結果有偏差,這是因為驗證碼內的多餘線條干擾了圖片的識別。

另外,tesserocr還有一個更加簡單的方法,這個方法可以直接將圖片文件轉為字元串,代碼如下:

不過這種方法的識別效果不如上一種的好。

驗證碼處理

對於上面的圖片,我們可以看到其實並沒有完全識別正確,所以我們需要對圖像作進一步的處理,如灰度轉換、二值化等操作。

我們可以利用Image對象的convert( )方法參數傳入L,即可將圖片轉化為灰度圖像,代碼如下:

傳入1即可將圖片進行二值化處理,如下所示:

我們還可以指定二值化的閾值。上面的方法採用的是默認閾值127。不過我們不能直接轉化原圖,要將原圖先轉化為灰度圖像,然後再指定二值化閾值,代碼如下:

在這里,變數threshold代表二值化閾值,閾值設置為160,之後我們來看看我們的結果:

我們可以看到現在的二維碼就比較方便我們進行識別了;那麼對於一些有干擾的圖片,我們做一些灰度和二值化處理,這會提高圖片識別的正確率。

⑷ 如何利用Python做簡單的驗證碼識別

先是獲取驗證碼樣本。。。我存了大概500個。
用dia測了測每個字之間的間距,直接用PIL開始切。
from PIL import Image
for j in range(0,500):
f=Image.open("../test{}.jpg".format(j))
for i in range(0,4):
f.crop((20+20*i,0,40+20*i,40)).save("test{0}-{1}.jpg".format(j,i+1))

上面一段腳本的意思是把jpg切成四個小塊然後保存
之後就是二值化啦。
def TotallyShit(im):
x,y=im.size
mmltilist=list()
for i in range(x):
for j in range(y):
if im.getpixel((i,j))<200:
mmltilist.append(1)
else:
mmltilist.append(0)
return mmltilist

咳咳,不要在意函數的名字。上面的一段代碼的意思是遍歷圖片的每個像素點,顏色數值小於200的用1表示,其他的用0表示。
其中的im代表的是Image.open()類型。
切好的圖片長這樣的。
只能說這樣切的圖片還是很粗糙,很僵硬。
下面就是分類啦。
把0-9,「+」,」-「的圖片挑好並放在不同的文件夾裡面,這里就是純體力活了。
再之後就是模型建立了。
這里我試了自己寫的還有sklearn svm和sklearn neural_network。發現最後一個的識別正確率高的多。不知道是不是我樣本問題QAQ。
下面是模型建立的代碼
from sklearn.neural_network import MLPClassifier
import numpy as np
def clf():
clf=MLPClassifier()
mmltilist=list()
X=list()
for i in range(0,12):
for j in os.listdir("douplings/douplings-{}".format(i)):
mmltilist.append(TotallyShit(Image.open("douplings/douplings-{0}/{1}".format(i,j)).convert("L")))
X.append(i)
clf.fit(mmltilist,X)
return clf

大概的意思是從圖片源中讀取圖片和label然後放到模型中去跑吧。
之後便是圖像匹配啦。
def get_captcha(self):
with open("test.jpg","wb") as f:
f.write(self.session.get(self.live_captcha_url).content)
gim=Image.open("test.jpg").convert("L")
recognize_list=list()
for i in range(0,4):
part=TotallyShit(gim.crop((20+20*i,0,40+20*i,40)))
np_part_array=np.array(part).reshape(1,-1)
predict_num=int(self.clf.predict(np_part_array)[0])
if predict_num==11:
recognize_list.append("+")
elif predict_num==10:
recognize_list.append("-")
else:
recognize_list.append(str(predict_num))
return ''.join(recognize_list)

最後eval一下識別出來的字元串就得出結果了。。
順便提一句現在的bilibili登陸改成rsa加密了,麻蛋,以前的腳本全部作廢,心好痛。
登陸的代碼。
import time
import requests
import rsa
r=requests.session()
data=r.get("act=getkey&_="+str(int(time.time()*1000))).json()
pub_key=rsa.PublicKey.load_pkcs1_openssl_pem(data['key'])
payload = {
'keep': 1,
'captcha': '',
'userid': "youruserid",
'pwd': b64encode(rsa.encrypt((data['hash'] +"yourpassword").encode(), pub_key)).decode(),
}
r.post("",data=payload)

⑸ Python面試數據分析,爬蟲和深度學習一般都問什麼問題,筆試題目考哪些

一面: 技術面試

面試官是一個比較老練的技術總監,貌似80後:

  1. 你先簡單做個自我介紹吧。

答:恩,好的,面試官你好,很高興能來到貴公司面試爬蟲工程師一職。我叫XXX,來自於***,畢業於****大學,**學歷。(如果專業不是計算機專業,就不要介紹自己的專業,如果是大專以下學歷,也不要說自己學歷,揚長避短這個道理大家應該都懂得)有2年多爬蟲工作經驗(如果真實是1年多,就說2年,如果真實是2年多就說3年),工作過2家公司(公司盡量不要說太多,如果2-3年經驗說2家就好,以免說的過多讓人覺得這人太容易干一段不幹,說的太少,可能在一個公司技術積累比較單一),第一家是從實習開始工作的。我就主要介紹下我上家公司的情況吧。我上家公司是****,是一家外包公司(如果是培訓班畢業的盡可能說外包,因為在外包公司,任何項目都可能做,方便後面很多問題的解釋),我在這家公司做了一年多,這家公司在****。我們這家公司是共有50多人。我在裡面負責公司的數據採集爬取,數據處理,繪圖分析等(爬蟲爬下來的數據很多都會進行一些清洗,可以把自己數據處理,繪圖的經驗說出來,增加優勢,如果沒有的話,就業余花時間去學習這方面,常規的方法都不難)。期間主要負責了集團對一些招聘網站、電商網站、金融網站、汽車網站(如果是單一業務的公司,你可能就說不了這么多種類了,一般採集的數據都會比較單一,這就體現了說外包的好處)。我之所以在上家公司離職是因為上家的公司項目基本都已經做完上線了,後面又接的項目感覺挑戰性不大,希望尋找一個平台做更多的項目(這個離職原因因人而異,如果換城市的話也可以簡單粗暴說我家人、朋友在這邊,如果還是同一個城市的話也可以按照我的那樣說,也可以其他方式,但是建議不要說公司經營不好之類的,不喜歡這家公司等等,經營不好可能跟公司員工也有關系,如果回答不喜歡上家公司,面試官會接著問,為什麼不喜歡,如果我們公司也是這種情況,你會不喜歡嗎,面試offer幾率就會大大減少)。因為來之前了解過貴公司,現在主要做金融數據採集的任務,後面也會進行一些大數據分析的工作,覺得項目規劃很有遠見就過來了。(面試前先查下公司底細,知己知彼)因為我在之前公司做過爬蟲、分析方面的工作,貴公司的這個項目也剛好是處於初期階段,我非常喜歡貴公司的這些項目。並且我認為我有能力將貴公司的項目做好,能勝任貴公司爬蟲工程師一職,我的情況大概就是這樣,您看您們這邊還需了解其他什麼嗎?


2.你主要採集的產業領域有哪些?接觸過金融行業嗎?

答:我之前主要接觸過汽車行業,招聘行業,電商行業,金融行業,金融行業也接觸過,但是說實話項目並不是很多,但是技術是相通的,可能剛開始不是很熟悉,只要適應一倆個星期都不是問題。


3.介紹爬蟲用到的技術

答:requests、scrapy:爬蟲框架和分布式爬蟲

xpath:網頁數據提取

re:正則匹配

numpy、pandas:處理數據

matplotlib:繪圖

mysql:數據存儲

redis:爬蟲數據去重和url去重

雲打:處理常規驗證碼

復雜驗證碼:用selenium模擬登陸、處理滑塊驗證碼等(滑塊驗證碼有方法,之前破解過滑塊驗證碼,有空我會出個基本使用教程,進行滑塊驗證碼破解,但不一定通用,因為每個網站反爬措施設置都不一樣)

4.處理過的最難的驗證碼?

答:12306點擊圖片驗證碼。原理:圖片發送給打碼平台,平台返回圖片位置數值,通過計算返回數字和圖片坐標的關系,進行模擬登陸

5.當開發遇到甩鍋問題怎麼解決?

答:如果是小問題自己感覺影響不大,背鍋就背了,畢竟如果是剛入公司很多不懂,可能會犯一些錯誤,如果是大問題,就找責任人(虛心點,不卑不亢)

二面:人事面試 主要問題:

1.你為什麼要從上家公司離職?

答:上家公司離職是因為上家的公司項目基本都已經做完上線了,後面又接的項目感覺挑戰性不大,希望尋找一個平台做更多的項目

2.來之前了解過我們公司嗎?

答:來之前了解過貴公司,現在主要做金融數據採集的任務,後面也會進行一些大數據分析的工作

3.簡單介紹一下你最大的缺點跟優點?

答:我的優點是對工作認真負責,團隊協作能力好,缺點是言辭表達需要提高,還有對一些細節的把握(我最大的缺點就是對細節過分追求,有多少人想這樣說的,能把自己的缺點說成這么好聽的優點,也是666了,這樣說面試成績減10分缺點就老老實實說一點模稜兩可的缺點就好了,不要過於滑頭,也不要太實在)

4.你怎麼理解你應聘的職位,針對你應聘的職位你最擅長的是什麼?

答:這份職位不僅僅是爬蟲方面的技術崗位,更是學習新知識,探索新領域的一條路,希望能有機會給公司貢獻一份力量。最擅長數據採集、處理分析

5.你對加班有什麼看法?除了工資,你希望在公司得到什麼?

答:1,適當的加班可以接受,過度的加班不能,因為要考慮個人,家庭等因素,同時我也會盡量在規定的時間內完成分配給我的任務,當然加班也希望獲得相應的加班費。2,希望這份工作能讓我發揮我的技能專長,這會給我帶來一種滿足感,我還希望我所做的工作能夠對我目前的技能水平形成一個挑戰,從而能促使我提升著急。

6.你的期望薪資是多少?

答:我的期望薪資是13K,因為上家公司已經是10k,而且自己也會的東西比較多,前端、後端、爬蟲都會,跳槽希望有一定的增長。

7.你什麼時候能到崗上班?

答:因為我已經從上家公司離職,可以隨時到崗。(想早上班就別托,先答應越早越好)

8.你還有什麼要問我的嗎?

答:問了公司的福利待遇,上班時間,培養計劃。(上班時間是5天制,沒有培養計劃,項目初創時期)最後結束面試,說這2天會電話通知,因為後面還好幾個競爭對手面試。

結論:面試是個概率事件,同時也跟運氣有關,在我的話術之上多進行面試總結,多面一些公司,相信大家都能找到理想工作

⑹ python簡單驗證碼識別的實現過程

demo :
import pytesseract
from PIL import Image
image = Image.open("captcha.png")
print(pytesseract.image_to_string(image))
=================================================
=================================================中文識別
import pytesseract
from PIL import Image
image = Image.open("00.jpg")
print(pytesseract.image_to_string(image,lang='chi_sim'))

有時候文本識別率並不高,建議圖像識別前,先對圖像進行灰度化和 二值化

效果如下(有時候第一次可能識別失敗,可以寫個循環邏輯讓它多識別幾次,一般程序運行1-3次基本會識別成功):

⑺ 如何利用Python 做驗證碼識別

用python加「驗證碼」為關鍵詞在里搜一下,可以找到很多關於驗證碼識別的文章。我大體看了一下,主要方法有幾類:一類是通過對圖片進行處理,然後利用字型檔特徵匹配的方法,一類是圖片處理後建立字元對應字典,還有一類是直接利用ocr模塊進行識別。不管是用什麼方法,都需要首先對圖片進行處理,於是試著對下面的驗證碼進行分析。
一、圖片處理
這個驗證碼中主要的影響因素是中間的曲線,首先考慮去掉圖片中的曲線。考慮了兩種演算法
第一種是首先取到曲線頭的位置,即x=0時,黑點的位置。然後向後移動x的取值,觀察每個x下黑點的位置,判斷前後兩個相鄰黑點之間的距離,如果距離在一定范圍內,可以基本判斷該點是曲線上的點,最後將曲線上的點全部繪成白色。試了一下這種方法,結果得到的圖片效果很一般,曲線不能完全去除,而且容量將字元的線條去除。
第二種考慮用單位面積內點的密度來進行計算。於是首先計算單位面積內點的個數,將單位面積內點個數少於某一指定數的面積去除,剩餘的部分基本上就是驗證碼字元的部分。本例中,為了便於操作,取了5*5做為單位范圍,並調整單位面積內點的標准密度為11。處理後的效果:
二、字元驗證
這里我使用的方法是利用pytesser進行ocr識別,但由於這類驗證碼字元的不規則性,使得驗證結果的准確性並不是很高。具體哪位大牛,有什麼好的辦法,希望能給指點一下。
三、准備工作與代碼實例
1、PIL、pytesser、tesseract
(1)安裝PIL:下載地址:http:// www. pythonware. com/procts/pil/(2)pytesser:下載地址:http :/ /code. google. com/p/pytesser/,下載解壓後直接放在代碼相同的文件夾下,即可使用。
(3)Tesseract OCR engine下載:http: / / code.google. com/p/tesseract-ocr/,下載後解壓,找到tessdata文件夾,用其替換掉pytesser解壓後的tessdata文件夾即可。
2、具體代碼
復制代碼
#encoding=utf-8
###利用點的密度計算
import Image,ImageEnhance,ImageFilter,ImageDrawimport sys
from pytesser import *
#計算范圍內點的個數
def numpoint(im):
w,h = im.size
data = list( im.getdata() )
mumpoint=0
for x in range(w):
for y in range(h):
if data[ y*w + x ] !=255:#255是白色
mumpoint+=1
return mumpoint
#計算5*5范圍內點的密度
def pointmi(im):
w,h = im.size
p=[]
for y in range(0,h,5):
for x in range(0,w,5):
box = (x,y, x+5,y+5)
im1=im.crop(box)
a=numpoint(im1)
if a<11:##如果5*5范圍內小於11個點,那麼將該部分全部換為白色。
for i in range(x,x+5):
for j in range(y,y+5):
im.putpixel((i,j), 255)
im.save(r'img.jpg')
def ocrend():##識別
image_name = "img.jpg"
im = Image.open(image_name)
im = im.filter(ImageFilter.MedianFilter())enhancer = ImageEnhance.Contrast(im)
im = enhancer.enhance(2)
im = im.convert('1')
im.save("1.tif")
print image_file_to_string('1.tif')
if __name__=='__main__':
image_name = "1.png"
im = Image.open(image_name)
im = im.filter(ImageFilter.DETAIL)
im = im.filter(ImageFilter.MedianFilter())enhancer = ImageEnhance.Contrast(im)
im = enhancer.enhance(2)
im = im.convert('1')
##a=remove_point(im)
pointmi(im)
ocrend()

⑻ 如何利用Python做簡單的驗證碼識別

1摘要

驗證碼是目前互聯網上非常常見也是非常重要的一個事物,充當著很多系統的防火牆功能,但是隨時OCR技術的發展,驗證碼暴露出來的安全問題也越來越嚴峻。本文介紹了一套字元驗證碼識別的完整流程,對於驗證碼安全和OCR識別技術都有一定的借鑒意義。

然後經過了一年的時間,筆者又研究和get到了一種更強大的基於CNN卷積神經網路的直接端到端的驗證識別技術(文章不是我的,然後我把源碼整理了下,介紹和源碼在這裡面):

基於python語言的tensorflow的『端到端』的字元型驗證碼識別源碼整理(github源碼分享)

2關鍵詞

關鍵詞:安全,字元圖片,驗證碼識別,OCR,Python,SVM,PIL

3免責聲明

本文研究所用素材來自於某舊Web框架的網站完全對外公開的公共圖片資源。

本文只做了該網站對外公開的公共圖片資源進行了爬取,並未越權做任何多餘操作。

本文在書寫相關報告的時候已經隱去漏洞網站的身份信息。

本文作者已經通知網站相關人員此系統漏洞,並積極向新系統轉移。

本報告的主要目的也僅是用於OCR交流學習和引起大家對驗證安全的警覺。

4引言

關於驗證碼的非技術部分的介紹,可以參考以前寫的一篇科普類的文章:

互聯網安全防火牆(1)--網路驗證碼的科普

裡面對驗證碼的種類,使用場景,作用,主要的識別技術等等進行了講解,然而並沒有涉及到任何技術內容。本章內容則作為它的技術補充來給出相應的識別的解決方案,讓讀者對驗證碼的功能及安全性問題有更深刻的認識。

5基本工具

要達到本文的目的,只需要簡單的編程知識即可,因為現在的機器學習領域的蓬勃發展,已經有很多封裝好的開源解決方案來進行機器學習。普通程序員已經不需要了解復雜的數學原理,即可以實現對這些工具的應用了。

主要開發環境:

⑼ python 實現12306模擬瀏覽器登錄 手動輸入驗證碼 怎麼輸入

代碼中驗證碼提供有兩種方式,第一種通過webbrowser的open直接在瀏覽器中打開含有驗證碼的圖片,第二種就是將其以jepg格式存在C:\\Users\\Administrator\\Desktop\\checkcode.jepg。你可以根據自己主機的用戶名更改路徑。同時這個代碼必須先指定用戶名和賬號也可以實時輸入賬號的密碼,小小修改一下代碼就可以。

⑽ python 爬蟲,關於驗證碼的問題。輸入驗證碼才能搜索。

#給你個例子參考驗證碼請求一次就變了
#!/usr/bin/python
#coding=utf-8
importrequests
importurllib
importurllib2,hashlib,md5

importcookielib

def_md5(password):
md5=hashlib.md5()
md5.update(str.encode(password))
psw=md5.hexdigest()
returnpsw
url='https://passport.liepin.com/captcha/randomcode?2hy270c2ji1'
req=urllib2.Request(url)
res_data=urllib2.urlopen(req)
res=res_data.read()
output_file=open('1.jpg','wb')
output_file.writelines(res)
output_file.close()
verifycode=res_data.headers['Set-Cookie'].split(';')[0]
verifycode=verifycode.replace('verifycode=','')
filename=res_data.headers['Content-disposition'].split(';')[1].strip()
exec(filename)

cookiejar=cookielib.CookieJar()
opener=urllib2.build_opener(urllib2.HTTPCookieProcessor(cookiejar))
vidcode=raw_input(u"請輸入驗證碼(在本路徑1.jpg):")
data={'user_login':"[email protected]",
'isMd5':"1",
'user_pwd':_md5('love123456'),
'verifycode':vidcode,
'url':""}

url='https://passport.liepin.com/h/login.json'
data=urllib.urlencode(data)
headers={'Content-Type':'application/x-www-form-urlencoded','X-Requested-With':'XMLHttpRequest','Cookie':'verifycode={0};'.format(verifycode)}
request=urllib2.Request(url,data,headers)
response=opener.open(request)
print'-------result-------------'
printresponse.read()
print'-------headers-------------'
printresponse.headers
print'-------cookies-------------'
forcookieincookiejar:
printcookie

閱讀全文

與python12306圖片驗證碼相關的資料

熱點內容
java帶參數的線程 瀏覽:913
為什麼安卓車載中控屏看起來很差 瀏覽:466
吃雞怎麼解壓最快 瀏覽:968
linux網路編程基礎 瀏覽:219
產研是程序員嗎 瀏覽:594
程序員的法律 瀏覽:969
編程第四關用冰雪火焰閃現通關 瀏覽:756
批處理當前文件夾參數 瀏覽:185
鴻蒙安卓如何下載 瀏覽:904
開3389命令 瀏覽:542
程序員大都單純嗎 瀏覽:915
APP如何實現下載功能 瀏覽:216
通達信源碼怎樣放到桌面 瀏覽:645
程序員的腦袋會禿嗎 瀏覽:455
為什麼eve登錄啟動不進去伺服器 瀏覽:272
微信招生app哪個好用 瀏覽:233
寶可夢劍盾啟動文件在哪個文件夾 瀏覽:765
壓縮機比容 瀏覽:117
python自動化測試面試 瀏覽:949
買便宜點的鞋子去哪個app買 瀏覽:890