㈠ python爬蟲是什麼
爬蟲一般是指網路資源的抓取,由於Python的腳本特性,易於配置對字元的處理非常靈活,Python有豐富的網路抓取模塊,因此兩者經常聯系在一起Python就被叫作爬蟲。
Python爬蟲的構架組成:
㈡ 如何利用Python抓取靜態網站及其內部資源
這個非常閉冊塌簡單,requests+BeautifulSoup組合就可以輕松實現,下轎圓面我簡單介紹一下,感興趣的朋友可以自己嘗試一下,這里以爬取糗事網路網站數據(靜態網站)為例:
1.首先,安裝requets模塊,這個直接在cmd窗口輸入命令「pipinstallrequests」就行,如下:
2.接著安裝bs4模塊,這個模塊包含了BeautifulSoup,安裝的話,和requests一樣,直接輸入安裝命令「pipinstallbs4」即可,如下:
3.最後就是requests+BeautifulSoup組合爬取糗事網路,requests用於請求頁面,BeautifulSoup用於解析頁面,提取數據,主要步驟及截圖如下:
這里假設爬取的數據包含如下幾個欄位,包括用戶昵稱、內容、好笑數和評論數:
接著打開對應網頁源碼,就可以直接看到欄位信息,內容如下,嵌套在各個標簽中,後面就是解析這些標簽提取數據:基於上面網頁內容,測試代碼如下,非常簡單,直接find對應標簽,提取文本內容即可:
程序運行截圖如下,已經成功抓取到網站數據:
至此,我們就完成了使用python來爬去靜態網站。總的來說,整個過程非常簡單,也是最基本的爬蟲內容,只要你有一定的python基礎,熟悉一下上面的示例,很快就能掌握的,當然,你也可以使用urllib,正則表達式匹配等,都行,網上也有相關教程和資料,介紹的非常詳細,感興趣的話,可以姿段搜一下,希望以上分享的內容能對你有所幫助吧,也歡迎大家評論、留言進行補充。
㈢ python網路爬蟲可以幹啥
Python爬蟲開發工程師,從網站某一個頁面(通常是首頁)開始,讀取網頁的內容,找到在網頁中的其它鏈接地址,然後通過這些鏈接地址尋找下一個網頁,這樣一直循環下去,直到把這個網站所有的網頁都抓取完為止。如果把整個互聯網當成一個網站,那麼網路蜘蛛就可以用這個原理把互聯網上所有的網頁都抓取下來。
網路爬蟲(又被稱為網頁蜘蛛,網路機器人,在FOAF社區中間,更經常的稱為網頁追逐者),是一種按照一定的規則,自動的抓取萬維網信息的程序或者腳本。另外一些不常使用的名字還有螞蟻,自動索引,模擬程序或者蠕蟲。爬蟲就是自動遍歷一個網站的網頁,並把內容都下載下來
㈣ 使用python3進行網頁抓取
先用get方法獲取網頁源碼,然後用正則表達式提取需要的部分(能用一些庫更好)
㈤ python爬蟲怎麼做
大到各類搜索引擎,小到日常數據採集,都離不開網路爬蟲。爬蟲的基本原理很簡單,遍歷網路中網頁,抓取感興趣的數據內容。這篇文章會從零開始介紹如何編寫一個網路爬蟲抓取數據做告宏,然後會一步步逐漸完善爬蟲的抓取功能。
工具安裝
我們需要安裝python,python的requests和BeautifulSoup庫。我們用Requests庫用抓取網頁的內容,使用BeautifulSoup庫來從網頁中提取數據。
安裝python
運行pipinstallrequests
運行pipinstallBeautifulSoup
抓取網頁
完成必要工具安裝後,我們正式開始編寫我們的爬蟲。我們的第一個任務是要抓取所有豆瓣上的圖書信息。我們以/subject/26986954/為例,首先看看開如何抓取網頁的內容。
使用python的requests提供的get()方法我們可以非常簡單的獲取的指定網頁的內純冊容,代碼如下:
提取內容
抓取到網頁的內容後,我們要做的就是提取出我們想要的內容。在我們的第一個例子中,我們只需要提取書名。首先我們導入BeautifulSoup庫,使用BeautifulSoup我們可以非常簡單的提取網頁的特定內容。
連續抓取網頁
到目前為止,我們已經可以抓取單個網頁的內容了,現在讓我們看看如何抓取整個網站的內容。我們知道網頁之間是通過超鏈接互相連接在一起的,通過鏈接我們可以訪問整個網路。所以我們可以從每個頁面提取出包含指向其它網頁的鏈接,然後重復的對新鏈接進行抓取。
通過以上幾步我們就可以寫出一個最原始的爬蟲。在理解了爬蟲原理的基礎上,我們可以進一步對爬蟲進行完善。
寫過一個系列關於爬蟲的文章:/i6567289381185389064/。感興趣的可以前往查看。
Python基本環境的搭建,爬蟲的基本原理以及爬蟲的原型
Python爬蟲入門(第1部分)
如何使用BeautifulSoup對網頁內容進行提取
Python爬蟲入門(第2部分)
爬蟲運行時數據的存儲數據,以SQLite和MySQL作為示例
Python爬蟲入門(第3部分)
使用seleniumwebdriver對動態網頁進行抓取
Python爬蟲入門(第4部分)
討論了如何處理網站的反爬蟲策略
Python爬友如蟲入門(第5部分)
對Python的Scrapy爬蟲框架做了介紹,並簡單的演示了如何在Scrapy下進行開發
Python爬蟲入門(第6部分)
㈥ Python中的網路爬蟲指的是什麼
網路爬蟲(又稱為網頁蜘蛛,網路機器人,在FOAF社區中間,更經常的稱為網頁追逐者),是一種按照一定的規則,自動地抓取萬維網信息的程序或者腳本。另外一些不常使用的名字還有螞蟻、自動索引、模擬程序或者蠕蟲。
隨著網路的迅速發展,萬維網成為大量信息的載體,如何有效地提取並利用這些信息成為一個巨大的挑戰。搜索引擎(Search Engine),例如傳統的通用搜索引擎AltaVista,Yahoo!和Google等,作為一個輔助人們檢索信息的工具成為用戶訪問萬維網的入口和指南。但是,這些通用性搜索引擎也存在著一定的局限性,如:
(1)不同領域、不同背景的用戶往往具有不同的檢索目的和需求,通過搜索引擎所返回的結果包含大量用戶不關心的網頁。
(2)通用搜索引擎的目標是盡可能大的網路覆蓋率,有限的搜索引擎伺服器資源與無限的網路數據資源之間的矛盾將進一步加深。
(3)萬維網數據形式的豐富和網路技術的不斷發展,圖片、資料庫、音頻、視頻多媒體等不同數據大量出現,通用搜索引擎往往對這些信息含量密集且具有一定結構的數據無能為力,不能很好地發現和獲取。
(4)通用搜索引擎大多提供基於關鍵字的檢索,難以支持根據語義信息提出的查詢。
相對於通用網路爬蟲,聚焦爬蟲還需要解決三個主要問題:
(1) 對抓取目標的描述或定義;
(2) 對網頁或數據的分析與過濾;
(3) 對URL的搜索策略。
網路-網路爬蟲
㈦ python抓取網頁時是如何處理驗證碼的
python抓取網頁時是如何處理驗證碼的?下面給大家介紹幾種方法:
1、輸入式驗證碼
這種驗證碼主要是通過用戶輸入圖片中的字母、數字、漢字等進行驗證。如下圖:
解決思路:這種是最簡單的一種,只要識別出裡面的內容,然後填入到輸入框中即可。這種識別技術叫OCR,這里我們推薦使用Python的第三方庫,tesserocr。對於沒有什麼背影影響的驗證碼如圖2,直接通過這個庫來識別就可以。但是對於有嘈雜的背景的驗證碼這種,直接識別識別率會很低,遇到這種我們就得需要先處理一下圖片,先對圖片進行灰度化,然後再進行二值化,再去識別,這樣識別率會大大提高。
相關推薦:《Python入門教程》
2、滑動式驗證碼
這種是將備選碎片直線滑動到正確的位置,如下圖:
解決思路:對於這種驗證碼就比較復雜一點,但也是有相應的辦法。我們直接想到的就是模擬人去拖動驗證碼的行為,點擊按鈕,然後看到了缺口的位置,最後把拼圖拖到缺口位置處完成驗證。
第一步:點擊按鈕。然後我們發現,在你沒有點擊按鈕的時候那個缺口和拼圖是沒有出現的,點擊後才出現,這為我們找到缺口的位置提供了靈感。
第二步:拖到缺口位置。
我們知道拼圖應該拖到缺口處,但是這個距離如果用數值來表示?
通過我們第一步觀察到的現象,我們可以找到缺口的位置。這里我們可以比較兩張圖的像素,設置一個基準值,如果某個位置的差值超過了基準值,那我們就找到了這兩張圖片不一樣的位置,當然我們是從那塊拼圖的右側開始並且從左到右,找到第一個不一樣的位置時就結束,這是的位置應該是缺口的left,所以我們使用selenium拖到這個位置即可。
這里還有個疑問就是如何能自動的保存這兩張圖?
這里我們可以先找到這個標簽,然後獲取它的location和size,然後 top,bottom,left,right = location['y'] ,location['y']+size['height']+ location['x'] + size['width'] ,然後截圖,最後摳圖填入這四個位置就行。
具體的使用可以查看selenium文檔,點擊按鈕前摳張圖,點擊後再摳張圖。最後拖動的時候要需要模擬人的行為,先加速然後減速。因為這種驗證碼有行為特徵檢測,人是不可能做到一直勻速的,否則它就判定為是機器在拖動,這樣就無法通過驗證了。
3、點擊式的圖文驗證和圖標選擇
圖文驗證:通過文字提醒用戶點擊圖中相同字的位置進行驗證。
圖標選擇: 給出一組圖片,按要求點擊其中一張或者多張。借用萬物識別的難度阻擋機器。
這兩種原理相似,只不過是一個是給出文字,點擊圖片中的文字,一個是給出圖片,點出內容相同的圖片。
這兩種沒有特別好的方法,只能藉助第三方識別介面來識別出相同的內容,推薦一個超級鷹,把驗證碼發過去,會返回相應的點擊坐標。
然後再使用selenium模擬點擊即可。具體怎麼獲取圖片和上面方法一樣。
4、宮格驗證碼
這種就很棘手,每一次出現的都不一樣,但是也會出現一樣的。而且拖動順序都不一樣。
但是我們發現不一樣的驗證碼個數是有限的,這里採用模版匹配的方法。我覺得就好像暴力枚舉,把所有出現的驗證碼保存下來,然後挑出不一樣的驗證碼,按照拖動順序命名,我們從左到右上下到下,設為1,2,3,4。上圖的滑動順序為4,3,2,1,所以我們命名4_3_2_1.png,這里得手動搞。當驗證碼出現的時候,用我們保存的圖片一一枚舉,與出現這種比較像素,方法見上面。如果匹配上了,拖動順序就為4,3,2,1。然後使用selenium模擬即可。
㈧ 如何用Python爬蟲抓取網頁內容
首先,你要安裝requests和BeautifulSoup4,然後執行如下代碼.
importrequests
frombs4importBeautifulSoup
iurl='http://news.sina.com.cn/c/nd/2017-08-03/doc-ifyitapp0128744.shtml'
res=requests.get(iurl)
res.encoding='utf-8'
#print(len(res.text))
soup=BeautifulSoup(res.text,'html.parser')
#標題
H1=soup.select('#artibodyTitle')[0].text
#來源
time_source=soup.select('.time-source')[0].text
#來源
origin=soup.select('#artibodyp')[0].text.strip()
#原標題
oriTitle=soup.select('#artibodyp')[1].text.strip()
#內容
raw_content=soup.select('#artibodyp')[2:19]
content=[]
forparagraphinraw_content:
content.append(paragraph.text.strip())
'@'.join(content)
#責任編輯
ae=soup.select('.article-editor')[0].text
這樣就可以了
㈨ 求python抓網頁的代碼
python3.x中使用urllib.request模塊來抓取網頁代碼,通過urllib.request.urlopen函數取網頁內容,獲取的為數據流,通過read()函數把數字讀取出來,再把讀取的二進制數據通過decode函數解碼(編號可以通過查看網頁源代碼中<meta http-equiv="content-type" content="text/html;charset=gbk" />得知,如下例中為gbk編碼。),這樣就得到了網頁的源代碼。
如下例所示,抓取本頁代碼:
importurllib.request
html=urllib.request.urlopen('
).read().decode('gbk')#注意抓取後要按網頁編碼進行解碼
print(html)
以下為urllib.request.urlopen函數說明:
urllib.request.urlopen(url,
data=None, [timeout, ]*, cafile=None, capath=None,
cadefault=False, context=None)
Open the URL url, which can be either a string or a Request object.
data must be a bytes object specifying additional data to be sent to
the server, or None
if no such data is needed. data may also be an iterable object and in
that case Content-Length value must be specified in the headers. Currently HTTP
requests are the only ones that use data; the HTTP request will be a
POST instead of a GET when the data parameter is provided.
data should be a buffer in the standard application/x-www-form-urlencoded format. The urllib.parse.urlencode() function takes a mapping or
sequence of 2-tuples and returns a string in this format. It should be encoded
to bytes before being used as the data parameter. The charset parameter
in Content-Type
header may be used to specify the encoding. If charset parameter is not sent
with the Content-Type header, the server following the HTTP 1.1 recommendation
may assume that the data is encoded in ISO-8859-1 encoding. It is advisable to
use charset parameter with encoding used in Content-Type header with the Request.
urllib.request mole uses HTTP/1.1 and includes Connection:close header
in its HTTP requests.
The optional timeout parameter specifies a timeout in seconds for
blocking operations like the connection attempt (if not specified, the global
default timeout setting will be used). This actually only works for HTTP, HTTPS
and FTP connections.
If context is specified, it must be a ssl.SSLContext instance describing the various SSL
options. See HTTPSConnection for more details.
The optional cafile and capath parameters specify a set of
trusted CA certificates for HTTPS requests. cafile should point to a
single file containing a bundle of CA certificates, whereas capath
should point to a directory of hashed certificate files. More information can be
found in ssl.SSLContext.load_verify_locations().
The cadefault parameter is ignored.
For http and https urls, this function returns a http.client.HTTPResponse object which has the
following HTTPResponse
Objects methods.
For ftp, file, and data urls and requests explicitly handled by legacy URLopener and FancyURLopener classes, this function returns a
urllib.response.addinfourl object which can work as context manager and has methods such as
geturl() — return the URL of the resource retrieved,
commonly used to determine if a redirect was followed
info() — return the meta-information of the page, such
as headers, in the form of an email.message_from_string() instance (see Quick
Reference to HTTP Headers)
getcode() – return the HTTP status code of the response.
Raises URLError on errors.
Note that None
may be returned if no handler handles the request (though the default installed
global OpenerDirector uses UnknownHandler to ensure this never happens).
In addition, if proxy settings are detected (for example, when a *_proxy environment
variable like http_proxy is set), ProxyHandler is default installed and makes sure the
requests are handled through the proxy.
The legacy urllib.urlopen function from Python 2.6 and earlier has
been discontinued; urllib.request.urlopen() corresponds to the old
urllib2.urlopen.
Proxy handling, which was done by passing a dictionary parameter to urllib.urlopen, can be
obtained by using ProxyHandler objects.
Changed in version 3.2: cafile
and capath were added.
Changed in version 3.2: HTTPS virtual
hosts are now supported if possible (that is, if ssl.HAS_SNI is true).
New in version 3.2: data can be
an iterable object.
Changed in version 3.3: cadefault
was added.
Changed in version 3.4.3: context
was added.