導航:首頁 > 編程語言 > 在python進行數據分析與可視化

在python進行數據分析與可視化

發布時間:2023-07-03 11:19:29

python可視化數據分析常用圖大集合(收藏)

python數據分析常用圖大集合:包含折線圖、直方圖、垂直條形圖、水平條形圖、餅圖、箱線圖、熱力圖、散點圖、蜘蛛圖、二元變數分布、面積圖、六邊形圖等12種常用可視化數據分析圖,後期還會不斷的收集整理,請關注更新!

以下默認所有的操作都先導入了numpy、pandas、matplotlib、seaborn

一、折線圖

折線圖可以用來表示數據隨著時間變化的趨勢

Matplotlib

plt.plot(x, y)

plt.show()

Seaborn

df = pd.DataFrame({'x': x, 'y': y})

sns.lineplot(x="x", y="y", data=df)

plt.show()

二、直方圖

直方圖是比較常見的視圖,它是把橫坐標等分成了一定數量的小區間,然後在每個小區間內用矩形條(bars)展示該區間的數值

Matplotlib

Seaborn

三、垂直條形圖

條形圖可以幫我們查看類別的特徵。在條形圖中,長條形的長度表示類別的頻數,寬度表示類別。

Matplotlib

Seaborn

1plt.show()

四、水平條形圖

五、餅圖

六、箱線圖

箱線圖由五個數值點組成:最大值 (max)、最小值 (min)、中位數 (median) 和上下四分位數 (Q3, Q1)。

可以幫我們分析出數據的差異性、離散程度和異常值等。

Matplotlib

Seaborn

七、熱力圖

力圖,英文叫 heat map,是一種矩陣表示方法,其中矩陣中的元素值用顏色來代表,不同的顏色代表不同大小的值。通過顏色就能直觀地知道某個位置上數值的大小。

通過 seaborn 的 heatmap 函數,我們可以觀察到不同年份,不同月份的乘客數量變化情況,其中顏色越淺的代表乘客數量越多

八、散點圖

散點圖的英文叫做 scatter plot,它將兩個變數的值顯示在二維坐標中,非常適合展示兩個變數之間的關系。

Matplotlib

Seaborn

九、蜘蛛圖

蜘蛛圖是一種顯示一對多關系的方法,使一個變數相對於另一個變數的顯著性是清晰可見

十、二元變數分布

二元變數分布可以看兩個變數之間的關系

十一、面積圖

面積圖又稱區域圖,強調數量隨時間而變化的程度,也可用於引起人們對總值趨勢的注意。

堆積面積圖還可以顯示部分與整體的關系。折線圖和面積圖都可以用來幫助我們對趨勢進行分析,當數據集有合計關系或者你想要展示局部與整體關系的時候,使用面積圖為更好的選擇。

十二、六邊形圖

六邊形圖將空間中的點聚合成六邊形,然後根據六邊形內部的值為這些六邊形上色。

原文至:https://www.py.cn/toutiao/16894.html

② python如何做數據分析

Python做數據分析比較好用且流行的是numpy、pandas庫,有興趣的話,可以深入了解、學習一下。

③ python可視化界面怎麼做


本文所演示的的可視化方法

散點圖(Scatterplot)

直方圖(Histogram)

小提琴圖(Violinplot)

特徵兩兩對比圖(Pairplot)

安德魯斯曲線(Andrewscurves)

核密度圖(Kerneldensityestimationplot)

平行坐標圖(Parallelcoordinates)

Radviz(力矩圖?)

熱力圖(Heatmap)

氣泡圖(Bubbleplot)

這里主要使用Python一個流行的作圖工具:Seabornlibrary,同時Pandas和bubbly輔助。為什麼Seaborn比較好?

因為很多時候數據分析,建模前,都要清洗數據,清洗後數據的結果總要有個格式,我知道的最容易使用,最方便輸入模型,最好畫圖的格式叫做"TidyData"(WickhamH.Tidydata[J].JournalofStatisticalSoftware,2014,59(10):1-23.)其實很簡單,TidyData格式就是:

每條觀察(記錄)自己佔一行

觀察(記錄)的每個特徵自己佔一列

舉個例子,我們即將作圖的數據集IRIS就是TidyData(IRIS(IRIS數據集)_網路):

Iris數據集是常用的分類實驗數據集,由Fisher,1936收集整理。Iris也稱鳶尾花卉數據集,是一類多重變數分析的數據集。數據集包含150個數據集,分為3類,每類50個數據,每個數據包含4個屬性。可通過花萼長度,花萼寬度,花瓣長度,花瓣寬度4個屬性預測鳶尾花卉屬於(Setosa,Versicolour,Virginica)三個種類中的哪一類。

該數據集包含了5個屬性:

Sepal.Length(花萼長度),單位是cm;

Sepal.Width(花萼寬度),單位是cm;

Petal.Length(花瓣長度),單位是cm;

Petal.Width(花瓣寬度),單位是cm;

種類:IrisSetosa(山鳶尾)、IrisVersicolour(雜色鳶尾),以及IrisVirginica(維吉尼亞鳶尾)。

IRIS數據

可以看到,每條觀察(ID=0,1,2...)自己佔一行,每個特徵(四個部位長/寬度,種類)自己佔一列。Seaborn就是為TidyData設計的,所以方便使用。

所以這個數據集有6列,6個特徵,很多時候做可視化就是為了更好的了解數據,比如這里就是想看每個種類的花有什麼特點,怎麼樣根據其他特徵把花分為三類。我個人的喜好是首先一張圖盡量多的包含數據點,展示數據信息,從中發現規律。我們可以利用以下代碼完全展示全部維度和數據這里用的bubbly:

三維圖,全局觀察

Python做出來,其實是一張可以拖動角度,放大縮小的圖,拖一拖看各角度視圖會發現三類還是分的挺明顯的。Github上這個bubbly還是很厲害的,方便。

接下來開始做一些基礎的可視化,沒有用任何修飾,代碼只有最關鍵的畫圖部分,可視化作賣敬悄為比賽的一個基礎和開端,個人理解做出的圖能看就行,美不美無所謂,不美也不扣分。因為

散點圖,可以得到相關性等信息,比如基本上SepalLengthCm越大,SepalWidthCm越大

散點圖

使用Jointplot,看兩個變數的分布,KDE圖,同時展示對應的數據點

就像上一篇說的,比賽中的每個環節都稿則至關重要,很有必要看下這些分布直方圖,kde圖,根據這些來處理異常值等,這里請教,為什麼畫了直方圖還要畫KDE??我理解說的都是差不多的東西。

關於KDE:"由於核密度估計方法不利用有關數據分布的先驗知識,對數據分布不附加任何假定,是一種從數據樣本本身出發研究數據分布特徵的方法,因而,在統計學理論和應用領域均受到高度的重視。"

無論如何,我們先畫直方圖,再畫KDE

直方圖KDE圖

這里通過KDE可以說,由於Setosa的KDE與其他兩種沒有交集,直接可以用Petailength線性區分Setosa與其他兩個物種。

Pairplot

箱線圖,顯示一組數據分散情況的統計圖。形狀如箱子。主要用於反映原始數據分布的特徵,關鍵的5個黑線是最中渣大值、最小值、中位數和兩個四分位數。在判斷異常值,處理異常值時候有用。

BoxPlot

小提琴圖

Violinplot

這個Andrewscurves很有趣,它是把所有特徵組合起來,計算個值,展示該值,可以用來確認這三個物種到底好不好區分,維基網路的說法是「Ifthereisstructureinthedata,itmaybevisibleintheAndrews'curvesofthedata.」(Andrewsplot-Wikipedia)

Andrews'curvesradviz

Radviz可視化原理是將一系列多維空間的點通過非線性方法映射到二維空間的可視化技術,是基於圓形平行坐標系的設計思想而提出的多維可視化方法。圓形的m條半徑表示m維空間,使用坐標系中的一點代表多為信息對象,其實現原理參照物理學中物體受力平衡定理。多維空間的點映射到二維可視空間的位置由彈簧引力分析模型確定。(Radviz可視化原理-CSDN博客),能展示一些數據的可區分規律。

數值是皮爾森相關系數,淺顏色表示相關性高,比如Petal.Length(花瓣長度)與Petal.Width(花瓣寬度)相關性0.96,也就是花瓣長的花,花瓣寬度也大,也就是個大花。

不過,現在做可視化基本上不用python了,具體為什麼可以去看我的寫的文章,我拿python做了爬蟲,BI做了可視化,效果和速度都很好。

finereport

可視化的一大應用就是數據報表,而FineReport可以自由編寫整合所需要的報表欄位進行報表輸出,支持定時刷新和監控郵件提醒,是大部分互聯網公司會用到的日常報表平台。

尤其是公司體系內經營報表,我們用的是商業報表工具,就是finereport。推薦他是因為有兩個高效率的點:①可以完成從資料庫取數(有整合數據功能)—設計報表模板—數據展示的過程。②類似excel做報表,一張模板配合參數查詢可以代替幾十張報表。

FineBI

簡潔明了的數據分析工具,也是我個人最喜歡的可視化工具,優點是零代碼可視化、可視化圖表豐富,只需要拖拖拽拽就可以完成十分炫酷的可視化效果,擁有數據整合、可視化數據處理、探索性分析、數據挖掘、可視化分析報告等功能,更重要的是個人版免費。

主要優點是可以實現自助式分析,而且學習成本極低,幾乎不需要太深奧的編程基礎,比起很多國外的工具都比較易用上手,非常適合經常業務人員和運營人員。在綜合性方面,FineBI的表現比較突出,不需要編程而且簡單易做,能夠實現平台展示,比較適合企業用戶和個人用戶,在數據可視化方面是一個不錯的選擇;

這些是我見過比較常用的,對數據探索有幫助的可視化方法。


這個非常簡單,PyQt就可以輕松實現,一個基於Qt的介麵包,可以直接拖拽控制項設計UI界面,下面我簡單介紹一下這個包的安裝和使用,感興趣的朋友可以自己嘗試一下:

1.首先,安裝PyQt模塊,這個直接在cmd窗口輸入命令「pipinstallpyqt5」就行,如下,整個模塊比較大,下載過程需要等待一會兒,保持聯網:

2.安裝完成後,我們就可以直接打開Qt自帶的QtDesigner設計師設計界面了,這里默認會安裝到site-packages->PyQt5->Qt->bin目錄,打開後的界面如下,可以直接新建對話框等窗口,所有的控制項都可以直接拖拽,編輯屬性,非常方便:

3.這里我簡單的設計了一個登錄窗口,2個輸入框和2個按鈕,如下,這里可以直接使用QSS對界面進行美化(設置styleSheet屬性即可),類似網頁的CSS,如果你有一定的前端基礎,那麼美化起來會非常容易:

設計完成後,還只是一個ui文件,不是現成的Python代碼,還需要藉助pyuic5工具(也在bin目錄下)才能將ui文件轉化為Python代碼,切換到ui文件所在目錄,輸入命令「pyuic5-ologin.pylogin.ui」即可(這里替換成你的ui文件),轉化成功後的Python代碼如下(部分截圖):

還需要在最下面添加一個main函數,創建上面Ui_Form類對象顯示窗口即可,如下:

最後點擊運行程序,效果如下,和剛才設計的界面效果一模一樣:

至此,我們就完成了利用Python的PyQt模塊直接拖拽控制項來設計UI界面。總的來說,整個過程非常簡單,只要你有一定的Python基礎,熟悉一下操作過程,很快就能掌握的,當然,還有許多其他UI開發模塊,像tkinter,wxPython,Eric6等,也都非常不錯,網上也有相關教程和資料,介紹的非常詳細,感興趣的話,可以搜一下,希望以上分享的內容能對你有所幫助吧,也歡迎大家評論、留言進行補充。


首先,如果沒有安裝python和PyQt軟體的請先直接搜索下載並安裝。python是一個開源軟體,因此都是可以在網上免費下載的,最新版本即可。下載完成後,我們先打開PyQtdesigner。

2

打開後,首先是一個默認的新建窗口界面,在這里我們就選擇默認的窗口即可。

3

現在是一個完全空白的窗口。第一步我們要先把所有的設計元素都拖進這個窗口。我們先拖入一個「Label」,就是一個不可編輯的標簽。

隨後我們再拖入一個可以編輯的「LineEdit」

最後我們拖入最後一個元素:「PushButton」按鈕,也就是平時我們所點的確定。

目前我們已經把所有所需要的元素都拖入了新建的窗口。對於每一個元素,我們都可以雙擊進行屬性值的修改,此時我們僅需要雙擊改個名字即可

此時我們已經完成了一半,接下來需要對動作信號進行操作。我們需要先切入編輯信號的模式

此時把滑鼠移動到任意元素,都會發現其變成紅色,代表其被選中。

當我們選中pushbutton後,繼續拖動滑鼠指向上面的lineedit,會發現由pushbutton出現一個箭頭指向了lineedit,代表pushbutton的動作會對lineedit進行操作。

隨即會彈出一個配置連接窗口。左邊的是pushbutton的操作,我們選擇clicked(),即點擊pushbutton。

右邊是對lineedit的操作,我們選擇clear(),即清楚lineedit中的內容。

最後我們點擊確定。

保存完成後,我們在PyQt中的操作就已經完成了。保存的文件名我們命名為test,PyQt生成的設計文件後綴是.ui。


④ 如何評價利用python製作數據採集,計算,可視化界面呢

先來設置兩個url地址,第一個用於第一次訪問,這樣可以獲得網站伺服器發來的cookie,第二個網址是用於登陸的地址
引入兩個模塊,cookielib和urllib2
接著,我們安裝一個cookie處理器,代碼如下,這個代碼很多人不太能讀懂,其實你會用就可以了,他們就是這個固定的形式,頂多改改變數的名字。你復制下來以後自己用就可以了,用多了,你再去看代碼的意義,你就都懂了。
然後我們先訪問一下網站,獲得一個cookie,你不用管這個cookie該怎麼弄,前面設置的cookie處理器會自動處理。
接著,我們寫一下postdata,也就是你要post的數據,因為我們打算登陸網站,所以postdata里肯定有用戶名和密碼,那麼怎麼知道該怎麼寫postdata呢?看你抓包得到的post數據。下面第一幅圖是httpwatch抓包截圖,點擊postdata,看到post的數據,然後我們看第二幅圖,就是python的寫法。你自己感受一下。
寫完postdata以後,我們 要將postdata轉碼一下,讓伺服器可以解讀postdata數據
接著設置headers信息,headers也是抓包得到的。同樣的方式,你去寫header內的信息
然後我們通過request方法來登陸網站,並返回數據,返回的數據存儲在request中
通過rulopen方法和read方法來讀取數據,並列印出來。
我們看到輸出的結果,這說明我們雖然正確的模擬了登陸網站需要的post信息,但是沒有考慮到登陸網站是需要驗證碼的,後期我們會看到如何處理驗證碼,如果你拿這個教程去處理沒有驗證碼的登陸問題,那麼你現在已經成功了。

⑤ Python中數據可視化經典庫有哪些

Python有很多經典的數據可視化庫,比較經典的數據可視化庫有下面幾個。

matplotlib

是Python編程語言及其數值數學擴展包 NumPy 的可視化操作界面。它利用通用的圖形用戶界面工具包,如 Tkinter, wxPython, Qt 或 GTK+,向應用程序嵌入式繪圖提供了應用程序介面。

pyplot 是 matplotlib 的一個模塊,它提供了一個類似 MATLAB 的介面。 matplotlib 被設計得用起來像 MATLAB,具有使用 Python 的能力。

優點:繪圖質量高,可繪制出版物質量級別的圖形。代碼夠簡單,易於理解和擴展,使繪圖變得輕松,通過Matplotlib可以很輕松地畫一些或簡單或復雜的圖形,幾行代碼即可生成直方圖、條形圖、散點圖、密度圖等等,最重要的是免費和開源。

優點:用於創建、操縱和研究復雜網路的結構、以及學習復雜網路的結構、功能及其動力學。

上面是我的回答,希望對您有所幫助!

⑥ Python數據分析:可視化

本文是《數據蛙三個月強化課》的第二篇總結教程,如果想要了解 數據蛙社群 ,可以閱讀 給DataFrog社群同學的學習建議 。溫馨提示:如果您已經熟悉python可視化內容,大可不必再看這篇文章,或是之挑選部分文章

對於我們數據分析師來說,不僅要自己明白數據背後的含義,而且還要給老闆更直觀的展示數據的意義。所以,對於這項不可缺少的技能,讓我們來一起學習下吧。

畫圖之前,我們先導入包和生成數據集

我們先看下所用的數據集

折線圖是我們觀察趨勢常用的圖形,可以看出數據隨著某個變數的變化趨勢,默認情況下參數 kind="line" 表示圖的類型為折線圖。

對於分類數據這種離散數據,需要查看數據是如何在各個類別之間分布的,這時候就可以使用柱狀圖。我們為每個類別畫出一個柱子。此時,可以將參數 kind 設置為 bar 。

條形圖就是將豎直的柱狀圖翻轉90度得到的圖形。與柱狀圖一樣,條形圖也可以有一組或多種多組數據。

水平條形圖在類別名稱很長的時候非常方便,因為文字是從左到右書寫的,與大多數用戶的閱讀順序一致,這使得我們的圖形容易閱讀。而柱狀圖在類別名稱很長的時候是沒有辦法很好的展示的。

直方圖是柱形圖的特殊形式,當我們想要看數據集的分布情況時,選擇直方圖。直方圖的變數劃分至不同的范圍,然後在不同的范圍中統計計數。在直方圖中,柱子之間的連續的,連續的柱子暗示數值上的連續。

箱線圖用來展示數據集的描述統計信息,也就是[四分位數],線的上下兩端表示某組數據的最大值和最小值。箱子的上下兩端表示這組數據中排在前25%位置和75%位置的數值。箱中間的橫線表示中位數。此時可以將參數 kind 設置為 box。

如果想要畫出散點圖,可以將參數 kind 設置為 scatter,同時需要指定 x 和 y。通過散點圖可以探索變數之間的關系。

餅圖是用面積表示一組數據的佔比,此時可以將參數 kind 設置為 pie。

我們剛開始學習的同學,最基本應該明白什麼數據應該用什麼圖形來展示,同學們來一起總結吧。

⑦ Python數據可視化--在Python中調用ggplot進行繪圖

如果你熟悉R語言,那麼你一定聽過ggplot2,它是R語言中非常好的數據可視化包,容易學習,功能強大。如果想要在Python中調用ggplot,我們該怎麼辦呢?本文提供了兩種不同的方式:

rpy2包可以讓Python和R共同工作。
官方網站: https://rpy2.github.io/
安裝方法: conda install -c r rpy2

好消息來了, ggplot2已經遷移到了Python社區。 目前有兩個Python版的實現,分別是ggplot與plotnine。這兩個庫都實現了ggplot的主要繪圖功能,這對熟悉R語言的小夥伴、同時使用R語言和Python語言的童鞋來說,是一個好消息。因為你只只需要掌握ggplot2之後,就可以同時在R語言和Python語言中進行數據可視化分析了。

官方網站: http://ggplot.yhathq.com/
安裝方法: pip install ggplot
繪圖示例:

運行結果:

官方網站: https://plotnine.readthedocs.io/en/stable/index.html
安裝方法: conda install -c conda-forge plotnine
繪圖示例:

運行結果:

閱讀全文

與在python進行數據分析與可視化相關的資料

熱點內容
區域網如何用ftp伺服器配置 瀏覽:70
程序員慣性思考模式 瀏覽:439
如何在個稅app上查身份證號 瀏覽:6
電視家app安裝在電視上怎麼安 瀏覽:889
怎麼將pdf格式轉化為圖片格式 瀏覽:637
伺服器拔掉raid卡怎麼裝系統 瀏覽:232
區域對稱加密演算法 瀏覽:245
數字轉漢字php 瀏覽:733
安卓源碼硬體驅動 瀏覽:208
痰證pdf 瀏覽:814
電腦怎麼把word文檔轉pdf 瀏覽:867
程序員那麼可愛有孩子了嗎 瀏覽:480
安卓文字折疊怎麼使用 瀏覽:885
創造一個app如何掙錢 瀏覽:801
php55vc11 瀏覽:642
抖音如何關閉蘋果app充值 瀏覽:332
python多個文件調用 瀏覽:792
java演算法和數據結構 瀏覽:465
糖豆視頻的文件夾 瀏覽:654
php的頭部文件一般在哪個文件里 瀏覽:560