導航:首頁 > 編程語言 > 如何用python分析相親網站

如何用python分析相親網站

發布時間:2023-07-03 13:57:36

A. python爬蟲如何分析一個將要爬取的網站

爬取網頁數據,需要一些工具,比如requests,正則表達式,bs4等,解析網頁首推bs4啊,可以通過標簽和節點抓取扒拍數據。

正巧簡悶,我最近發布了一篇文章就是抓取網頁數據分析的,有完整的抓取步驟,你可以看一下?不好意思給自己打了一下廣春咐羨告?

B. 如何使用python爬取知乎數據並做簡單分析

一、使用的技術棧:
爬蟲:python27 +requests+json+bs4+time
分析工具: ELK套件
開發工具:pycharm
數據成果簡單的可視化分析
1.性別分布
0 綠色代表的是男性 ^ . ^
1 代表的是女性
-1 性別不確定
可見知乎的用戶男性頗多。
二、粉絲最多的top30
粉絲最多的前三十名:依次是張佳瑋、李開復、黃繼新等等,去知乎上查這些人,也差不多這個排名,說明爬取的數據具有一定的說服力。
三、寫文章最多的top30
四、爬蟲架構
爬蟲架構圖如下:
說明:
選擇一個活躍的用戶(比如李開復)的url作為入口url.並將已爬取的url存在set中。
抓取內容,並解析該用戶的關注的用戶的列表url,添加這些url到另一個set中,並用已爬取的url作為過濾。
解析該用戶的個人信息,並存取到本地磁碟。
logstash取實時的獲取本地磁碟的用戶數據,並給elsticsearchkibana和elasticsearch配合,將數據轉換成用戶友好的可視化圖形。
五、編碼
爬取一個url:
解析內容:
存本地文件:
代碼說明:
* 需要修改獲取requests請求頭的authorization。
* 需要修改你的文件存儲路徑。
源碼下載:點擊這里,記得star哦!https : // github . com/forezp/ZhihuSpiderMan六、如何獲取authorization
打開chorme,打開https : // www. hu .com/,
登陸,首頁隨便找個用戶,進入他的個人主頁,F12(或滑鼠右鍵,點檢查)七、可改進的地方
可增加線程池,提高爬蟲效率
存儲url的時候我才用的set(),並且採用緩存策略,最多隻存2000個url,防止內存不夠,其實可以存在redis中。
存儲爬取後的用戶我說採取的是本地文件的方式,更好的方式應該是存在mongodb中。
對爬取的用戶應該有一個信息的過濾,比如用戶的粉絲數需要大與100或者參與話題數大於10等才存儲。防止抓取了過多的僵屍用戶。
八、關於ELK套件
關於elk的套件安裝就不討論了,具體見官網就行了。網站:https : // www . elastic . co/另外logstash的配置文件如下:
從爬取的用戶數據可分析的地方很多,比如地域、學歷、年齡等等,我就不一一列舉了。另外,我覺得爬蟲是一件非常有意思的事情,在這個內容消費升級的年代,如何在廣闊的互聯網的數據海洋中挖掘有價值的數據,是一件值得思考和需不斷踐行的事情。

C. 如何用python爬取網站數據

這里簡單介紹一下吧,以抓取網站靜態、動態2種數據為慧返拍例,實驗環境win10+python3.6+pycharm5.0,主要內容如下:

抓取網站靜態數據(數據在網頁源碼中):以糗事網路網站數據為例

1.這里假設我們抓取的數據如下,主要包括用戶昵稱、內容、好笑數和評論數這4個欄位,如下:

對應的網頁源碼如下,包含我們所需要的數據:

2.對應網頁結構,主要代碼如下,很簡單,主要用到requests+BeautifulSoup,其中requests用於請求頁面,BeautifulSoup用於解析頁面:

程序運行截圖如下,已經成功爬取到數據:

抓取網站動態數據(數據不在網頁源碼中,json等文件中):以人人貸網站數據為例

1.這里假設我們爬取的是債券數據,主要包括年利率世型、借款標題、期限、金額和進度這5個欄位信息,截圖如下:

打開網頁源碼中,可以發現數據不在網頁源碼中,按F12抓包分析時,才發現在一個json文件中,如下:

2.獲取到json文件的url後,我們就可以爬取對應數據了,這里使用的包與上面類似,因為是json文件,所以還用了json這個包(解析json),主要內容如下:

程序運行截圖如下,前羨已經成功抓取到數據:

至此,這里就介紹完了這2種數據的抓取,包括靜態數據和動態數據。總的來說,這2個示例不難,都是入門級別的爬蟲,網頁結構也比較簡單,最重要的還是要會進行抓包分析,對頁面進行分析提取,後期熟悉後,可以藉助scrapy這個框架進行數據的爬取,可以更方便一些,效率更高,當然,如果爬取的頁面比較復雜,像驗證碼、加密等,這時候就需要認真分析了,網上也有一些教程可供參考,感興趣的可以搜一下,希望以上分享的內容能對你有所幫助吧。

D. python爬蟲如何分析一個將要爬取的網站

首先,你去爬取一個網站,

你會清楚這個網站是屬於什麼類型的網站(新聞,論壇,貼吧等等)。

你會清楚你需要哪部分的數據

你需要去想需要的數據你將如何編寫表達式去解析。

你會碰到各種反爬措施,無非就是各種網路各種解決。當爬取成本高於數據成本,你會選擇放棄。

你會利用你所學各種語言去解決你將要碰到的問題,利用各種語言的client組件去請求你想要爬取的URL,獲取到HTML,利用正則,XPATH去解析你想要的數據,然後利用sql存儲各類資料庫。

E. 如何用最簡單的Python爬蟲採集整個網站

採集網站數據並不難,但是需要爬蟲有足夠的深度。我們創建一個爬蟲,遞歸地遍歷每個網站,只收集那些網站頁面上的數據。一般的比較費時間的網站採集方法從頂級頁面開始(一般是網站主頁),然後搜索頁面上的所有鏈接,形成列表,再去採集到的這些鏈接頁面,繼續採集每個頁面的鏈接形成新的列表,重復執行。

F. python怎麼做大數據分析

數據獲取:公開數據、Python爬蟲外部數據的獲取方式主要有以下兩種。(推薦學習:Python視頻教程)
第一種是獲取外部的公開數據集,一些科研機構、企業、政府會開放一些數據,你需要到特定的網站去下載這些數據。這些數據集通常比較完善、質量相對較高。
另一種獲取外部數據的方式就是爬蟲。
比如你可以通過爬蟲獲取招聘網站某一職位的招聘信息,爬取租房網站上某城市的租房信息,爬取豆瓣評分評分最高的電影列表,獲取知乎點贊排行、網易雲音樂評論排行列表。基於互聯網爬取的數據,你可以對某個行業、某種人群進行分析。
在爬蟲之前你需要先了解一些 Python 的基礎知識:元素(列表、字典、元組等)、變數、循環、函數………
以及,如何用 Python 庫(urlpb、BeautifulSoup、requests、scrapy)實現網頁爬蟲。
掌握基礎的爬蟲之後,你還需要一些高級技巧,比如正則表達式、使用cookie信息、模擬用戶登錄、抓包分析、搭建代理池等等,來應對不同網站的反爬蟲限制。
數據存取:SQL語言
在應對萬以內的數據的時候,Excel對於一般的分析沒有問題,一旦數據量大,就會力不從心,資料庫就能夠很好地解決這個問題。而且大多數的企業,都會以SQL的形式來存儲數據。
SQL作為最經典的資料庫工具,為海量數據的存儲與管理提供可能,並且使數據的提取的效率大大提升。你需要掌握以下技能:
提取特定情況下的數據
資料庫的增、刪、查、改
數據的分組聚合、如何建立多個表之間的聯系
數據預處理:Python(pandas)
很多時候我們拿到的數據是不幹凈的,數據的重復、缺失、異常值等等,這時候就需要進行數據的清洗,把這些影響分析的數據處理好,才能獲得更加精確地分析結果。
對於數據預處理,學會 pandas (Python包)的用法,應對一般的數據清洗就完全沒問題了。需要掌握的知識點如下:
選擇:數據訪問
缺失值處理:對缺失數據行進行刪除或填充
重復值處理:重復值的判斷與刪除
異常值處理:清除不必要的空格和極端、異常數據
相關操作:描述性統計、Apply、直方圖等
合並:符合各種邏輯關系的合並操作
分組:數據劃分、分別執行函數、數據重組
Reshaping:快速生成數據透視表
概率論及統計學知識
需要掌握的知識點如下:
基本統計量:均值、中位數、眾數、百分位數、極值等
其他描述性統計量:偏度、方差、標准差、顯著性等
其他統計知識:總體和樣本、參數和統計量、ErrorBar
概率分布與假設檢驗:各種分布、假設檢驗流程
其他概率論知識:條件概率、貝葉斯等
有了統計學的基本知識,你就可以用這些統計量做基本的分析了。你可以使用 Seaborn、matplotpb 等(python包)做一些可視化的分析,通過各種可視化統計圖,並得出具有指導意義的結果。
Python 數據分析
掌握回歸分析的方法,通過線性回歸和邏輯回歸,其實你就可以對大多數的數據進行回歸分析,並得出相對精確地結論。這部分需要掌握的知識點如下:
回歸分析:線性回歸、邏輯回歸
基本的分類演算法:決策樹、隨機森林……
基本的聚類演算法:k-means……
特徵工程基礎:如何用特徵選擇優化模型
調參方法:如何調節參數優化模型
Python 數據分析包:scipy、numpy、scikit-learn等
在數據分析的這個階段,重點了解回歸分析的方法,大多數的問題可以得以解決,利用描述性的統計分析和回歸分析,你完全可以得到一個不錯的分析結論。
當然,隨著你實踐量的增多,可能會遇到一些復雜的問題,你就可能需要去了解一些更高級的演算法:分類、聚類。
然後你會知道面對不同類型的問題的時候更適合用哪種演算法模型,對於模型的優化,你需要去了解如何通過特徵提取、參數調節來提升預測的精度。
你可以通過 Python 中的 scikit-learn 庫來實現數據分析、數據挖掘建模和分析的全過程。
更多Python相關技術文章,請訪問Python教程欄目進行學習!以上就是小編分享的關於python怎麼做大數據分析的詳細內容希望對大家有所幫助,更多有關python教程請關注環球青藤其它相關文章!

G. 如何用python實現《多社交網路的影響力最大化問題分析》中的演算法

經過一周,現已初步完成,其中多出代碼不夠美觀以及效率不高,還請指點
# _*_ coding:utf-8 _*_
# ==================================================================================
#
# Description: Influence Maximization on Multiple Social Networks
#
# ==================================================================================
import matplotlib.pyplot as plt
import networkx as nx
import heapq

#總圖
G = nx.DiGraph()

def load_graph(file):
'''
載入文件為列表格式,並得到G,畫出圖結構
'''

#將總列表設成全局格式
global gllist

#迭代文件中每個元素
with open(file) as f:
lines = f.readlines()
mylist = [line.strip().split() for line in lines]

gllist = []
#將字元串型轉換為整型
for i in mylist:
gllist.append(i[:-2]+map(lambda x: float(x), i[-2:]))
print '初始全局列表:'
print gllist

drawlist=[]
#提取二維列表mylist每行前三個元素,賦給新的列表drawlist
for i in range(len(mylist)):
drawlist.append([])
for j in range(3):
drawlist[i].append(mylist[i][j])
#將列表drawlist載入為有向加權圖
G.add_weighted_edges_from(drawlist)
nx.draw(G, with_labels=True, width=1, node_color='y', edge_color='b')
plt.show()
print 'G圖中所有節點:',G.nodes()
print 'G圖中所有邊:',G.edges()
print '\n'

def get_self_node(gllist, target=None):
'''
獲取目標節點的自傳播節點,返回selflist並包含目標節點
'''
#初始化自傳播節點列表
selflist = [target]

#存放已傳播節點列表
haslist = []

flag = 0

while (flag != 0):
flag = 0
for target in selflist:
if target not in haslist:
for i in range(len(gllist)):
#判斷二維列表中,每行第三個元素是否為1,若為1,則為自傳播節點
if ((gllist[i][0] == target)or(gllist[i][1]==target))and(gllist[i][3]==1.0):
if gllist[i][0] == target:
if gllist[i][1] not in haslist:
selflist.append(gllist[i][1])
haslist.append(gllist[i][1])
flag += 1
else:
if gllist[i][0] not in haslist:
selflist.append(gllist[i][0])
haslist.append(gllist[i][0])
flag += 1
#去除重復元素
haslist = set(haslist)
selflist = set(selflist)

#去除重復元素
selflist = set(selflist)
return selflist

def longest_path(gllist,source=None,target=None):
'''
獲取起始點到實體的最大路徑集合,返回為longestpath列表
'''
longestpath = []
newlist = []
for i in range(len(gllist)):
newlist.append([])
for j in range(3):
newlist[i].append(gllist[i][j])
#構建圖結構
G1 = nx.DiGraph()
#添加帶權有向邊
G1.add_weighted_edges_from(newlist)
#獲取目標節點的所有自傳播街邊,並存入selflist中
selflist = get_self_node(gllist, target)
max_path = 0
val_path = 1
#獲取初始節點到目標節點及目標節點的自傳播節點的最大路徑
for v in selflist:
if v != source:
#遍歷兩點之間所有路徑,並進行比對
for path in nx.all_simple_paths(G1,source=source,target=v):
#判斷路徑後兩個元素是否為相同實體(如:b1->b2)
if is_self_transmit_node(path[-2], v) == 0:
for i in range(0, len(path)-1):
val_path *= G1.get_edge_data(path[i], path[i+1])['weight']
if max_path < val_path:
max_path = val_path
val_path = 1
#若目標節點為起始節點則直接跳出
else: continue ############ 有待商榷 ##############
longestpath.append(max_path)
#返回初始節點到實體的最大路徑
return longestpath

def is_self_transmit_node(u, v):
'''
判斷目標節點不為起始節點的自傳播點
'''
flag = 0
#獲得起始節點的所有自傳播點
selflist = get_self_node(gllist, v)
for x in selflist:
if u == x:
flag = 1
return flag

def single_strong_infl(longestpath):
'''
計算起始點到實體的傳播概率(影響強度),返回影響強度stronginfl
'''
temp = 1
for x in longestpath:
temp *= 1-x
stronginfl = 1-temp
return stronginfl

def all_strong_infl(G):
'''
獲得每個節點對實體的影響概率
'''
allstrong = [] #初始化所有節點的加權影響范圍列表
gnodes = [] #初始化節點列表
tempnodes = [] #初始化臨時節點列表

gnodes = G.nodes()

for u in gnodes:
strong = 0 #存儲初始節點對每個實體的影響范圍加權,初始化為0
#重置臨時節點列表
tempnodes = G.nodes()
for v in tempnodes:
#非自身節點
if u != v:
#判斷目標節點不為起始節點的自傳播點
if is_self_transmit_node(v, u) == 0:
#獲取起始節點到實體間最大加權路徑,並存入longestpath
longestpath = longest_path(gllist, u, v)

#去除已遍歷目標節點的所有自傳播節點
renode = get_self_node(gllist, v)
for x in renode:
if x != v:
tempnodes.remove(x)

#計算起始節點到實體間傳播概率(影響強度)
stronginfl = single_strong_infl(longestpath)
strong += stronginfl

#添加單個節點到所有實體的加權影響范圍
allstrong.append([u, round(strong, 2)])

#返回每個節點到所有實體的加權影響范圍
return allstrong
#output allstrong : [['a1', 2.48], ['a2', 1.6880000000000002], ['b1', 0.7], ['b2', 0], ['c1', 0], ['d2', 0.6]]

def uS_e_uppergain(u, ev, S):
'''
獲取節點u在集合S的基礎上對實體ev的影響增益, 傳入候選節點,上界gain(u|S, ev)
'''

#獲取目前實體的所有自傳播節點
selflist = get_self_node(gllist, ev)
stronglist = []
#遍歷自傳遍節點
for v in selflist:
'''
判斷節點v是否存在種子集合S中
其中v為單個節點,如v(ev, Gi)
S為種子節點集合,如['a1','a2','b1','b2','c1','d2']
'''
if v in S:
ppSv = 1
else:
longestpath = []
#遍歷種子集合
for s in S:

#初始化路徑權值與最大路徑權值
val_path = 1
max_path = 0

#遍歷兩點之間所有路徑,並進行比對
for path in nx.all_simple_paths(G,source=s,target=v):
#判斷路徑後兩個元素是否為相同實體(如:b1->b2)
if is_self_transmit_node(path[-2], v) == 0:
for i in range(0, len(path)-1):
val_path *= G.get_edge_data(path[i], path[i+1])['weight']
if max_path < val_path:
max_path = val_path
#重置路徑權值為1
val_path = 1
#將最大加權路徑存入longestpath列表
longestpath.append(max_path)
#得到上界pp(S,v)的影響概率,上界pp(S,v)
ppSv = single_strong_infl(longestpath)

stronglist.append(ppSv)
#得到上界pp(S,ev)的影響概率,上界pp(S,ev)
ppSev = single_strong_infl(stronglist)

#獲取pp(u,ev)
ppuev = single_strong_infl(longest_path(gllist, u, ev))

#計算上界gain(u|S,ev)
uSevgain = (1 - ppSev) * ppuev
return uSevgain

def uppergain(u, emu, ems, S):
'''
在已有種子集合S的基礎上,求得節點u的影響增益上界,
其中傳進參數ems為二維列表,如[['a1',2.48],['a2',1.688]],S則為['a1','a2']
'''
uSgain = 0.0
#遍歷emu得到列表形式,得到如['a1',2.48]形式
for ev in emu:
#判斷節點是否存在種子集合中
if ev[0] in S:
uSgain += uS_e_uppergain(u, ev[0], S)
else:
uSgain += ev[1]

#返回上界gain(u|S)
return uSgain

def bound_base_imms(G, k):
'''
完全使用影響增益上界的方式選擇top-k個種子節點的過程
'''
#初始化emu,H,初始化ems=空集,S=空集

Htemp = []
Htemp = all_strong_infl(G)
H = []
#遍歷Htemp=[['a1',2.48],['a2',1.688]],得到如['a1',2.48]形式
for x in Htemp:
#逐個獲取二維列表中每一行,形式為['a1',2.48,0]
H.append([x[0],x[1],0])

emu = []
emu = all_strong_infl(G)

ems = []
S = []

for i in range(k):

#提取堆頂元素,tnode的形式為['a1',2.48,0]
tnode = heapq.nlargest(1, H, key=lambda x: x[1])
#將[['b2', 3.1, 0]]格式改為['b2', 3.1, 0]格式
tnode = sum(tnode, [])

while (tnode[2] != i):
gain = 0.0
#獲取節點u的影響增益上界
gain = uppergain(tnode, emu, ems, S)
#賦值影響范圍
tnode[1] = gain
#修改status
tnode[2] = i

#對堆進行排序
H = heapq.nlargest(len(H), H, key=lambda x: x[1])

#獲取堆頂元素
tnode = heapq.nlargest(1, H, key=lambda x: x[1])
tnode = sum(tnode, [])

#添加node到種子集合
S.append([tnode[0]])
#更新ems,添加新節點及節點對每個實體的影響范圍加權
ems.append([tnode[0], tnode[1]])

#刪除堆頂元素
H.remove(tnode)
print ems
return sum(S, [])

if __name__=='__main__':

#大小為k的種子集合S
k = 60

#載入文件數據,得到圖G和初始列表gllist
load_graph('test.txt')

#完全使用影響增益上界值的計算過程函數,列印種子集合S
print '種子集合:',bound_base_imms(G, k)

test.txt
a1 b1 0.2 0
a1 c1 0.8 0
a2 b2 0.4 0
a2 d2 1 0
b1 c1 0.7 0
c2 a2 0.8 0
d2 b2 0.6 0
a1 a2 1 1
a2 a1 0.1 1
....
a1 l1 0.5 0
a1 m1 0.5 0
a1 q1 0.5 0
a1 v1 0.5 0
a1 z1 0.5 0
a1 s1 0.5 0
a1 w1 0.5 0
a1 u1 0.5 0
其中前兩列為傳播實體,第三列為實體間傳播概率,最後一列為0代表同一網路傳播,為1代表網路間自傳播。
下來要進行優化:
1.採用獨立級聯模型,設置閾值
2.將最大路徑改為最短路徑,利用log

閱讀全文

與如何用python分析相親網站相關的資料

熱點內容
區域網如何用ftp伺服器配置 瀏覽:70
程序員慣性思考模式 瀏覽:439
如何在個稅app上查身份證號 瀏覽:6
電視家app安裝在電視上怎麼安 瀏覽:889
怎麼將pdf格式轉化為圖片格式 瀏覽:637
伺服器拔掉raid卡怎麼裝系統 瀏覽:232
區域對稱加密演算法 瀏覽:245
數字轉漢字php 瀏覽:733
安卓源碼硬體驅動 瀏覽:208
痰證pdf 瀏覽:814
電腦怎麼把word文檔轉pdf 瀏覽:867
程序員那麼可愛有孩子了嗎 瀏覽:480
安卓文字折疊怎麼使用 瀏覽:885
創造一個app如何掙錢 瀏覽:801
php55vc11 瀏覽:642
抖音如何關閉蘋果app充值 瀏覽:332
python多個文件調用 瀏覽:792
java演算法和數據結構 瀏覽:465
糖豆視頻的文件夾 瀏覽:654
php的頭部文件一般在哪個文件里 瀏覽:560