『壹』 求python支持向量機多元回歸預測代碼
Python 代碼示例,使用 scikit-learn 庫中的 SVR 類實現多元回歸預測:
from sklearn.svm import SVR
import numpy as np
# 構造訓練數據
X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
y = np.array([1, 2, 3])
# 創建模型並訓練
clf = SVR(kernel='linear')
clf.fit(X, y)
# 進行預測
predictions = clf.predict(X)
print(predictions)
請注意,以上代碼僅供參考,可能需要根據實際情況進行修改。
『貳』 求python支持向量機數據設置標簽代碼
以下是使用Python中的Scikit-learn庫實現支持向量機(SVM)模型的盯寬數據設置標簽代碼示例:
from sklearn import svm
# 假設有以下三個樣本的數據:
X = [[0, 0], [1, 1], [2, 2]]
y = [0, 1, 1] # 對應每個數據點的標簽,凱悔0表示負樣本,1表示正樣本
# 創建SVM模型
clf = svm.SVC()
# 將數據集(X)和標簽(y)作為訓練數據來訓練模型
clf.fit(X, y)
上述代碼中,X是一個二維數組,每個元素都代表一個數據點的特徵值,y是一凱孫亮個一維數組,每個元素都代表對應數據點的標簽。通過將X和y作為訓練數據,可以訓練SVM模型並得到分類結果。
『叄』 求python多元支持向量機多元回歸模型最後預測結果導出代碼、測試集與真實值R2以及對比圖代碼
這是一個多元支持向量機回歸的模型,以下是一個參考的實現代碼:
import numpy as npimport matplotlib.pyplot as pltfrom sklearn import svmfrom sklearn.metrics import r2_score
# 模擬數據
np.random.seed(0)
X = np.sort(5 * np.random.rand(80, 1), axis=0)
y = np.sin(X).ravel()
y[::5] += 3 * (0.5 - np.random.rand(16))
# 分割數據
train_X = X[:60]
train_y = y[:60]
test_X = X[60:]
test_y = y[60:]
# 模型訓練
model = svm.SVR(kernel='rbf', C=1e3, gamma=0.1)
model.fit(train_X, train_y)
# 預測結果
pred_y = model.predict(test_X)# 計算R2r2 = r2_score(test_y, pred_y)
# 對比圖
plt.scatter(test_X, test_y, color='darkorange', label='data')
plt.plot(test_X, pred_y, color='navy', lw=2, label='SVR model')
plt.title('R2={:.2f}'.format(r2))
plt.legend()
plt.show()
上面的代碼將數據分為訓練數據和測試數據,使用SVR模型對訓練數據進行訓練,然後對測試數據進行預測。計算預測結果與真實值的R2,最後將結果畫出對比圖,以評估模型的效果。
『肆』 python svm 怎麼訓練模型
支持向量機SVM(Support Vector Machine)是有監督的分類預測模型,本篇文章使用機器學習庫scikit-learn中的手寫數字數據集介紹使用Python對SVM模型進行訓練並對手寫數字進行識別的過程。
准備工作
手寫數字識別的原理是將數字的圖片分割為8X8的灰度值矩陣,將這64個灰度值作為每個數字的訓練集對模型進行訓練。手寫數字所對應的真實數字作為分類結果。在機器學習sklearn庫中已經包含了不同數字的8X8灰度值矩陣,因此我們首先導入sklearn庫自帶的datasets數據集。然後是交叉驗證庫,SVM分類演算法庫,繪制圖表庫等。
12345678910#導入自帶數據集from sklearn import datasets#導入交叉驗證庫from sklearn import cross_validation#導入SVM分類演算法庫from sklearn import svm#導入圖表庫import matplotlib.pyplot as plt#生成預測結果准確率的混淆矩陣from sklearn import metrics讀取並查看數字矩陣
從sklearn庫自帶的datasets數據集中讀取數字的8X8矩陣信息並賦值給digits。
12#讀取自帶數據集並賦值給digitsdigits = datasets.load_digits()查看其中的數字9可以發現,手寫的數字9以64個灰度值保存。從下面的8×8矩陣中很難看出這是數字9。
12#查看數據集中數字9的矩陣digits.data[9]以灰度值的方式輸出手寫數字9的圖像,可以看出個大概輪廓。這就是經過切割並以灰度保存的手寫數字9。它所對應的64個灰度值就是模型的訓練集,而真實的數字9是目標分類。我們的模型所要做的就是在已知64個灰度值與每個數字對應關系的情況下,通過對模型進行訓練來對新的手寫數字對應的真實數字進行分類。
1234#繪制圖表查看數據集中數字9的圖像plt.imshow(digits.images[9], cmap=plt.cm.gray_r, interpolation='nearest')plt.title('digits.target[9]')plt.show()
從混淆矩陣中可以看到,大部分的數字SVM的分類和預測都是正確的,但也有個別的數字分類錯誤,例如真實的數字2,SVM模型有一次錯誤的分類為1,還有一次錯誤分類為7。
『伍』 如何利用python使用libsvm
把包解壓在C盤之中,如:C:\libsvm-3.182.
因為要用libsvm自帶的腳本grid.py和easy.py,需要去官網下載繪圖工具gnuplot,解壓到c盤.進入c:\libsvm\tools目錄下,用文本編輯器(記事本,edit都可以)修改grid.py和easy.py兩個文件,找到其中關於gnuplot路徑的那項,根據實際路徑進行修改,並保存
python與libsvm的連接(參考SVM學習筆記(2)LIBSVM在python下的使用)
1.打開IDLE(pythonGUI),輸入>>>importsys>>>sys.version
2.如果你的python是32位,將出現如下字元:
(default,Apr102012,23:31:26)[MSCv.150032bit(Intel)]』
這個時候LIBSVM的python介面設置將非常簡單。在libsvm-3.16文件夾下的windows文件夾中找到動態鏈接庫libsvm.dll,將其添加到系統目錄,如`C:\WINDOWS\system32\』,即可在python中使用libsvm
wk_ad_begin({pid : 21});wk_ad_after(21, function(){$('.ad-hidden').hide();}, function(){$('.ad-hidden').show();});
3.執行一個小例子
importos
os.chdir('C:\libsvm-3.18\python')#請根據實際路徑修改
fromsvmutilimport*
y,x=svm_read_problem('../heart_scale')#讀取自帶數據
m=svm_train(y[:200],x[:200],'-c4')
p_label,p_acc,p_val=svm_predict(y[200:],x[200:],m)
##出現如下結果,應該是正確安裝了optimizationfinished,#iter=257nu=0.351161
obj=-225.628984,rho=0.636110nSV=91,nBSV=49
TotalnSV=91
Accuracy=84.2857%(59/70)(classification)
『陸』 如何利用 Python 實現 SVM 模型
我先直觀地闡述我對SVM的理解,這其中不會涉及數學公式,然後給出Python代碼。
SVM是一種二分類模型,處理的數據可以分為三類:
線性可分,通過硬間隔最大化,學習線性分類器
近似線性可分,通過軟間隔最大化,學習線性分類器
線性不可分,通過核函數以及軟間隔最大化,學習非線性分類器
線性分類器,在平面上對應直線;非線性分類器,在平面上對應曲線。
硬間隔對應於線性可分數據集,可以將所有樣本正確分類,也正因為如此,受雜訊樣本影響很大,不推薦。
軟間隔對應於通常情況下的數據集(近似線性可分或線性不可分),允許一些超平面附近的樣本被錯誤分類,從而提升了泛化性能。
如下圖:
我們可以看到,當支持向量太少,可能會得到很差的決策邊界。如果支持向量太多,就相當於每次都利用整個數據集進行分類,類似KNN。