『壹』 使用java來實現在智能組卷中的遺傳演算法(急急急)
題目好像是讓你做個增強版的List ,簡單的都實現了 程序架子大概是這樣,排序查找什麼的網路搜下 演算法很多,套著每樣寫個方法就行了,測試就在main『方法里寫
publicclassMyList{
privateString[]arr;
privateintcount;
publicMyList(intcount){
arr=newString[count];
this.count=count;
}
publicMyList(int[]intArr){
arr=newString[intArr.length];
this.count=intArr.length;
for(inti=0;i<intArr.length;i++){
arr[i]=intArr[i]+"";
}
}
publicMyList(String[]stringArr){
arr=stringArr;
this.count=stringArr.length;
}
publicintgetLength(){
returncount;
}
//清空容器內的數組。
publicvoidclearAll(){
arr=newString[count];
}
//通過給定元素下標來刪除某一元素
publicvoidremoveBySeqn(intseqn){
if(seqn>=0&&seqn<count){
arr[seqn]=null;
}
}
publicstaticvoidmain(String[]args){
MyListlist=newMyList(40);
MyListlist1=newMyList({3,2,125,56,123});
MyListlist2=newMyList({"123",""ad});
list2.removeBySeqn(0);
list1.clearAll();
}
}
『貳』 遺傳演算法的模擬 數據結構題目
我這里給出了一個簡單的模板如果需要編代碼填代碼的地方已經有提示了
/*package otherFile;
import java.util.Random;
import tGraph.TdcppGraph;
import shuffP.*;
*/
/**************
*
* @author vaqeteart
* 這里是遺傳演算法的核心框架遺傳演算法的步驟:
* 遺傳演算法核心部分的演算法描述
* 演算法步驟:
* 1、初始化
* 1.1、生成初始種群編碼
* 1.2、計算每個個體的適配值。
* 1.3、記錄當前最優適配值和最優個體
* 2、選擇和遺傳,
* 2.0、若當前最優適配值多次小於已有的最優適配值(或相差不大)很多次,或者進化的次數超過設定的限制,轉4。
* 2.1、按照與每個個體的適配值成正比的概率選擇個體並復制,復制之後個體的數目和原始種群數目一樣。
* 2.2、(最好先打亂復制後種群的個體次序)對復制後個體進行兩兩配對交叉,生成相同數目的的下一代種群。
* 2.3、對下一代種群按照一定的概率進行變異
* 2.4、計算每個個體的適配值。
* 2.5、記錄當前最優適配值和最優個體
* 2.6、轉2
* 3、返回當前最優適配值以及其對應的編碼,結束。
*
* 注意:
* 1.這里的內容相當於一個模板,編寫具體的遺傳演算法的時候,可以按照這個模板的形式編寫。
* 2.應該填寫代碼的地方都有提示的標記。
*/
public class GAKernel
{
//number of population
int popNum;//set the number to 20 in constructor
//current evolution times
int evolutionTim;
//limit of the evolution times
int evolutionLim;//set the number to 20 in constructor
//unaccepted times
//int eliminTim;
//limit of unaccepted times
//int eliminLim;
//current best euler code
//int curBestCode[];
//current best fitness
int curBestFitness;
//fitness of every indivial
int iFitness[];
//fator of compute the fitness
int factor;
//..................other members.............................................
//the graph
//public TdcppGraph tpGraph;
//the eula code group
//int codes[][];
//every population
//
//constructor
GAKernel(TdcppGraph tG,int eulerCode[])
{
popNum = 32;//2*2*2*2*2
//factor = Integer.MAX_VALUE / popNum;//to avoid overflow when select,for every fitness
evolutionTim = 0;/////
evolutionLim = 15;///////
//this.tpGraph=new TdcppGraph(tG);
//eliminTim = 0;
//eliminLim
curBestFitness = 0;
//curBestCode = new int[eulerCode.length];
//for(int i = 0; i < curBestCode.length; ++i)
//{
// curBestCode[i] = eulerCode[i];
//}
//??curBestFitness
iFitness = new int[popNum];
//codes = new int[popNum][];//lines
for(int i = 0; i < popNum; ++i)
{
//codes[i] = new int[eulerCode.length];
iFitness[i] = 0;
}
System.out.println("構造函數,需要填入代碼");
}
//initialize the originalpopulation
void initPopulation()
{
//.......................初始化種群........................................
//int tmpCode[] = new int[curBestCode.length];
//get the initial indivial
//for(int i = 0; i < curBestCode.length; ++i)
//{
// tmpCode[i] = curBestCode[i];
// codes[0][i] = tmpCode[i];
//}
//ShuffEP s = new ShuffEP(this.tpGraph);
//for(int i = 1; i < popNum; ++i)
//{
// s.shuff(tmpCode);
// for(int j = 0; j < tmpCode.length; ++j)
// {
// codes[i][j] = tmpCode[j];
// }
//}
System.out.println("初始化種群,需要填入代碼");
//get the initial fitness to the member iFitness
computeFitness();
//get the initial best indivial and fitness
recordBest();
}
//compute the fitness of every indivial in current population
void computeFitness()
{
//........................計算每個個體適應度.......................
//int time = 0;
//for(int i = 0; i < popNum; ++i)
//{
// time = 0;
// for(int j = 0; j < codes[i].length - 1; ++j)
// {
// time += tpGraph.Edge(codes[i][j], codes[i][j + 1]).getCost(time);
// }
// iFitness[i] = factor - time;
// if(iFitness[i] < 0)
// {
// System.out.println("錯誤,某個個體適應度過小使得適配值出現負數");//lkdebug
// System.exit(1);
// }
//}
System.out.println("計算每個個體適應度,需要填入代碼");
}
//record the current best fitness and the according indivial
void recordBest()
{
int bestIndex = -1;
for(int i = 0; i < popNum; ++i)
{
if(curBestFitness < iFitness[i])
{
curBestFitness = iFitness[i];
bestIndex = i;
}
}
//............................記錄最優個體.............................
if(bestIndex > -1)
{
// for(int i = 0; i < curBestCode.length; ++i)
// {
// curBestCode[i] = codes[bestIndex][i];
// }
}
System.out.println("記錄最優個體,需要填入代碼");
}
//selection and reproce indivial in population
void selIndivial()
{
int tmpiFitness[] = new int[iFitness.length];
tmpiFitness[0] = iFitness[0];
//建立臨時群體用於選擇交換
//.................................復制個體...............................
//清除原來的群體
//int tmpCode[][] = new int[popNum][];
//for(int i = 0; i < codes.length; ++i)
//{
// tmpCode[i] = new int[codes[i].length];//???
// for(int j = 0; j < codes[i].length; ++j)
// {// to tmpCode and reset codes
// tmpCode[i][j] = codes[i][j];
// codes[i][j] = -1;
// }
//}
System.out.println("復制個體,需要填入代碼");
for(int i = 1; i < tmpiFitness.length; ++i)
{
tmpiFitness[i] = tmpiFitness[i - 1] + iFitness[i];
//iFitness[i] = 0;
}
//輪盤賭選擇個體
for(int i = 0; i < popNum; ++i)
{
int rFit = new Random().nextInt(tmpiFitness[tmpiFitness.length - 1]);
for(int j = 0; j < tmpiFitness.length; ++j)
{
if(rFit < tmpiFitness[j])
{
rFit = j;//record the index of the indivial
break;
}
}
if(rFit == 0)
{
iFitness[i] = tmpiFitness[rFit];
}
else
{
iFitness[i] = tmpiFitness[rFit] - tmpiFitness[rFit - 1];// fitness
}
//....................................選擇個體...........................
//for(int j = 0; j < tmpCode[rFit].length; ++j)
//{
// codes[i][j] =tmpCode[rFit][j];
//}
System.out.println("選擇個體,需要填入代碼");
}
//get the copied fitness in iFitness
}
//match every two indivial and cross the code
void matchCross()
{
//........................需要填入代碼................................
System.out.println("配對交叉,需要填入代碼");
}
//mutate by a specifical probability
void mutate()
{
//........................按照一定的概率進行變異.......................
System.out.println("按照一定的概率進行變異,需要填入代碼");
}
//evolve current population
void evolve()
{
selIndivial();
matchCross();
mutate();
}
//compute the approximative best value by GA
//find approximative best solution by GA
public void compute()
{
initPopulation();
//while((evolutionTim < evolutionLim) && (eliminTim < eliminLim))
while(evolutionTim < evolutionLim)
{
evolve();
//get the initial fitness to the member iFitness
computeFitness();
//get the initial best indivial and fitness
recordBest();
++evolutionTim;
}
}
}
『叄』 優化演算法筆記(六)遺傳演算法
遺傳演算法(Genetic Algorithms,GA)是一種模擬自然中生物的遺傳、進化以適應環境的智能演算法。由於其演算法流程簡單,參數較少優化速度較快,效果較好,在圖像處理、函數優化、信號處理、模式識別等領域有著廣泛的應用。
在遺傳演算法(GA)中,每一個待求問題的候選解被抽象成為種群中一個個體的基因。種群中個體基因的好壞由表示個體基因的候選解在待求問題中的所的得值來評判。種群中的個體通過與其他個體交叉產生下一代,每一代中個體均只進行一次交叉。兩個進行交叉的個體有一定幾率交換一個或者多個對應位的基因來產生新的後代。每個後代都有一定的概率發生變異。發生變異的個體的某一位或某幾位基因會變異成其他值。最終將以個體的適應度值為概率選取個體保留至下一代。
遺傳演算法啟發於生物的繁殖與dna的重組,本次的主角選什麼呢?還是根據大家熟悉的孟德爾遺傳規律選豌豆吧,選動物的話又會有人疑車,還是植物比較好,本次的主角就是它了。
遺傳演算法包含三個操作(運算元):交叉,變異和選擇操作。下面我們將詳細介紹這三個操作。
大多數生物的遺傳信息都儲存在DNA,一種雙螺旋結構的復雜有機化合物。其含氮鹼基為腺嘌呤、鳥嘌呤、胞嘧啶及胸腺嘧啶。
表格中表示了一個有10個基因的個體,它們每一個基因的值為0或者1。
生物的有性生殖一般伴隨著基因的重組。遺傳演算法中父輩和母輩個體產生子代個體的過程稱為交叉。
表中給出了兩個豌豆的基因,它們均有10個等位基因(即編號相同的基因)。
遺傳演算法的交叉過程會在兩個個體中隨機選擇1位或者n位基因進行交叉,即這兩個個體交換等位基因。
如,A豌豆和B豌豆在第6位基因上進行交叉,則其結果如下
當兩個個體交叉的等位基因相同時,交叉過程也有可能沒有產生新的個體,如交叉A豌豆和B豌豆的第2位基因時,交叉操作並沒有產生新的基因。
一般的會給群體設定一個交叉率,crossRate,表示會在群體中選取一定比例的個體進行交叉,交叉率相對較大,一般取值為0.8。
基因的變異是生物進化的一個主要因素。
遺傳演算法中變異操作相對簡單,只需要將一個隨機位基因的值修改就行了,因為其值只為0或1,那麼當基因為0時,變異操作會將其值設為1,當基因值為1時,變異操作會將其值設為0。
上圖表示了A豌豆第3位基因變異後的基因編碼。
與交叉率相似,變異操作也有變異率,alterRate,但是變異率會遠低於交叉率,否則會產生大量的隨機基因。一般變異率為0.05。
選擇操作是遺傳演算法中的一個關鍵操作,它的主要作用就是根據一定的策略隨機選擇個體保留至下一代。適應度越優的個體被保留至下一代的概率越大。
實現上,我們經常使用「輪盤賭」來隨機選擇保留下哪個個體。
假設有4個豌豆A、B、C、D,它們的適應度值如下:
適應度值越大越好,則它們組成的輪盤如下圖:
但由於輪盤賭選擇是一個隨機選擇過程,A、B、C、D進行輪盤賭選擇後產生的下一代也有可能出現A、A、A、A的情況,即雖然有些個體的適應度值不好,但是運氣不錯,也被選擇留到了下一代。
遺產演算法的三個主要操作介紹完了,下面我們來看看遺傳演算法的總體流程:
前面我們說了遺傳演算法的流程及各個操作,那麼對於實際的問題我們應該如何將其編碼為基因呢?
對於計算機來所所有的數據都使用二進制數據進行存放,如float類型和double類型的數據。
float類型的數據將保存為32位的二進制數據:1bit(符號位) 8bits(指數位) 23bits(尾數位)
如-1.234567f,表示為二進制位
Double類型的數據將保存為64位的二進制數據:1bit(符號位) 11bits(指數位) 53bits(尾數位)
如-1.234567d,表示為二進制為
可以看出同樣的數值不同的精度在計算機中存儲的內容也不相同。之前的適應度函數 ,由於有兩個double類型的參數,故其進行遺傳演算法基因編碼時,將有128位基因。
雖然基因數較多,但好在每個基因都是0或者1,交叉及變異操作非常簡單。
相比二進制編碼,十進制編碼的基因長度更短,適應度函數 有兩個輸入參數,那麼一個個體就有2個基因,但其交叉、變異操作相對復雜。
交叉操作
方案1:將一個基因作為一個整體,交換兩個個體的等位基因。
交換前
交換第1位基因後
方案2:將兩個個體的等位基因作為一個整體,使其和不變,但是值隨機
交換前
交換第1位基因後
假設A、B豌豆的第一位基因的和為40,即 ,第一位基因的取值范圍為0-30,那麼A、B豌豆的第一位基因的取值范圍為[10,30],即 為[0,30]的隨機數, 。
變異操作,將隨機的一位基因設置為該基因取值范圍內的隨機數即可。
這個過程說起來簡單但其實現並不容易。
我們要將它們的值映射到一個軸上才能進行隨機選擇,畢竟我們無法去繪制一個輪盤來模擬這個過程
如圖,將ABCD根據其值按順序排列,取[0,10]內的隨機數r,若r在[0,1]內則選擇A,在(1,3]內則選擇B,在(3,6]內則選擇C,在(6,10]則選擇D。
當然這仍然會有問題,即當D>>A、B、C時,假如它們的值分布如下
那麼顯然,選D的概率明顯大於其他,根據輪盤賭的選擇,下一代極有可能全是D的後代有沒有辦法均衡一下呢?
首先我想到了一個函數,
不要問我為什麼我不知道什麼是神經什麼網路的,什麼softmax、cnn統統沒聽說過。
這樣一來,它們之間的差距沒有之前那麼大了,只要個體適應度值在均值以上那麼它被保留至下一代的概率會相對較大,當然這樣縮小了個體之間的差距,對真正優秀的個體來說不太公平,相對應,我們可以在每次選擇過程中保留當前的最優個體到下一代,不用參與輪盤賭這個殘酷的淘汰過程。
最令人高興的環節到了,又可以愉快的湊字數了。
由於遺傳演算法的收斂速度實在是太慢,區區50代,幾乎得不到好的結果,so我們把它的最大迭代次數放寬到200代。
使用二進制編碼來進行求解
參數如下:
求解過程如上圖,可以看出基因收斂的很快,在接近20代時就圖中就只剩一個點了,之後的點大概是根據變異操作產生。看一下最後的結果。
可以看出最好的結果已經得到了最優解,但是10次實驗的最差值和平均值都差的令人發指。為什麼會這樣呢?
問題出在二進制編碼上,由於double類型的編碼有11位指數位和52位小數位,這會導致交叉、變異操作選到指數位和小數位的概率不均衡,在小數位上的修改對結果的影響太小而對指數為的修改對結果的影響太大,
如-1.234567d,表示為二進制為
對指數為第5位進行變異操作後的結果為-2.8744502924382686E-10,而對小數位第5為進行變異操作後的結果為-1.218942。可以看出這兩部分對數值結果的影響太不均衡,得出較好的結果時大概率是指數位與解非常相近,否則很難得出好的結果,就像上面的最差值和均值一樣。
所以使用上面的二進制編碼不是一個好的基因編碼方式,因此在下面的實驗中,將使用十進制來進行試驗。
使用:十進制編碼來進行求解
參數如下:
我們可以看到直到40代時,所有的個體才收束到一點,但隨後仍不斷的新的個體出現。我們發現再後面的新粒子總是在同一水平線或者豎直線上,因為交叉操作直接交換了兩個個體的基因,那麼他們會相互交換x坐標或者y坐標,導致新個體看起來像在一條直線上。
我們來看看這次的結果。
這次最優值沒有得到最優解,但是最差值沒有二進制那麼差,雖然也不容樂觀。使用交換基因的方式來進行交叉操作的搜索能力不足,加之輪盤賭的選擇會有很大概率選擇最優個體,個體總出現在矩形的邊上。
下面我們先改變輪盤賭的選擇策略,使用上面的sigmod函數方案,並且保留最優個體至下一代。
使用:十進制編碼來進行求解
參數如下:
看圖好像跟之前的沒什麼區別,讓我們們看看最終的結果:
可以看出,最優值沒有什麼變化,但是最差值和平均值有了較大的提升,說明該輪盤賭方案使演算法的魯棒性有了較大的提升。在每次保留最優個體的情況下,對於其他的個體的選擇概率相對平均,sigmod函數使得即使適應度函數值相差不太大的個體被選到的概率相近,增加了基因的多樣性。
使用:十進制編碼來進行求解,改變交叉方案,保持兩個個體等位基因和不變的情況下隨機賦值。
參數如下:
上圖可以看出該方案與之前有明顯的不同,在整個過程中,個體始終遍布整個搜索空間,雖然新產生的個體大多還是集中在一個十字架型的位置上,但其他位置的個體比之前的方案要多。
看看結果,
這次的結果明顯好於之前的所有方案,但仍可以看出,十進制的遺傳演算法的精度不高,只能找到最優解的附近,也有可能是演算法的收斂速度實在太慢,還沒有收斂到最優解。
遺傳演算法的探究到此也告一段落,在研究遺傳演算法時總有一種力不從心的感覺,問題可能在於遺傳演算法只提出了一個大致的核心思想,其他的實現細節都需要自己去思考,而每個人的思維都不一樣,一萬個人能寫出一萬種遺傳演算法,其實不僅是遺傳演算法,後面的很多演算法都是如此。
為什麼沒有對遺傳演算法的參數進行調優,因為遺傳演算法的參數過於簡單,對結果的影響的可解釋性較強,意義明顯,實驗的意義不大。
遺傳演算法由於是模仿了生物的進化過程,因此我感覺它的求解速度非常的慢,而且進化出來的結果不一定是最適應環境的,就像人的闌尾、視網膜結構等,雖然不是最佳的選擇但是也被保留到了今天。生物的進化的隨機性較大,要不是恐龍的滅絕,也不會有人類的統治,要不是人類有兩只手,每隻手有5根手指,也不會產生10進制。
以下指標純屬個人yy,僅供參考
目錄
上一篇 優化演算法筆記(五)粒子群演算法(3)
下一篇 優化演算法筆記(七)差分進化演算法
優化演算法matlab實現(六)遺傳演算法matlab實現
『肆』 基本遺傳演算法介紹
遺傳演算法是群智能優化計算中應用最為廣泛、最為成功、最具代表性的智能優化方法。它是以達爾文的生物進化論和孟德爾的遺傳變異理論為基礎,模擬生物進化過程和機制,產生的一種群體導向隨機搜索技術和方法。
遺傳演算法的基本思想:首先根據待求解優化問題的目標函數構造一個適應度函數。然後,按照一定的規則生成經過基因編碼的初始群體,對群體進行評價、遺傳運算(交叉和變異)、選擇等操作。經過多次進化,獲得適應度最高的一個或幾個最優個體作為問題的最優解。
編碼是對問題的可行解的遺傳表示,是影響演算法執行效率的關鍵因素的之一。遺傳演算法中,一個解 稱為個體或染色體(chromosome),染色體由被稱為基因(gene)的離散單元組成,每個基因控制顏色體的一個或多個特性,通常採用固定長度的0-1二進制編碼,每個解對應一個唯一的二進制編碼串編碼空間中的二進制位串稱為基因型(genotype)。而實際所表示問題的解空間的對應點稱為表現型(phenotype)。
種群由個體構成,每個個體的染色體對應優化問題的一個初始解。
適應度函數是評價種群中個體對環境適應能力的唯一確定性指標,體現出「適者生存,優勝劣汰」這一自然選擇原則。
遺傳演算法在每次迭代過程中,在父代種群中採用某種選擇策略選擇出指定數目的哥特體提進行遺傳操作。最常用的選擇策略是正比選擇(proportional selection)策略。
在 交叉運算元中,通常由兩個被稱為父代(parent)的染色體組合,形成新的染色體,稱為子代(offspring)。父代是在種群中根據個體適應度進行選擇,因此適應度較高的染色體的基因更有可能被遺傳到下一代 。通過在迭代過程中不斷地應用交叉運算元,使優良個體的基因得以在種群中頻繁出現,最終使得整個種群收斂到一個最優解。
在染色體交叉之後產生的子代個體,其基因位可能以很小的概率發生轉變,這個過程稱為變異。變異是為了增強種群的多樣性,將搜索跳出局部最優解。
遺傳演算法的停止准則一般採用設定最大迭代次數或適應值函數評估次數,也可以是規定的搜索精度。
已Holland的基本GA為例介紹演算法等具體實現,具體的執行過程描述如下:
Step 1: 初始化 。隨機生成含有 個個體的初始種群 ,每個個體經過編碼對應著待求解優化問題的一個初始解。
Step 2: 計算適應值 。個體 ,由指定的適應度函數評價其適應環境的能力。不同的問題,適應度函數的構造方式也不同。對函數優化問題,通常取目標函數作為適應度函數。
Step 3: 選擇 。根據某種策略從當前種群中選擇出 個個體作為重新繁殖的下一代群體。選擇的依據通常是個體的適應度的高低,適應度高的個體相比適應度低的個體為下一代貢獻一個或多個後代的概率更大。選擇過程提現了達爾文「適者生存」原則。
Step 4: 遺傳操作 。在選出的 個個體中,以事件給定的雜交概率 任意選擇出兩個個體進行 交叉運算 ,產生兩個新的個體,重復此過程直到所有要求雜交的個體雜交完畢。根據預先設定的變異概率 在 個個體中選擇出若干個體,按一定的策略對選出的個體進行 變異運算 。
Step 5: 檢驗演算法等停止條件 。若滿足,則停止演算法的執行,將最優個體的染色體進行解碼得到所需要的最優解,否則轉到 Step 2 繼續進行迭代過程。
『伍』 《Java遺傳演算法編程》pdf下載在線閱讀全文,求百度網盤雲資源
《Java遺傳演算法編程》網路網盤pdf最新全集下載:
鏈接: https://pan..com/s/1l6_14X1Yhcgv8kYwHqyY2g
『陸』 java寫的遺傳演算法
package baseclass;
import java.awt.BorderLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
import javax.swing.JTextField;
/**
* 編寫者: 賴志環
* 標准遺傳演算法求解函數
* 編寫日期: 2007-12-2
*/
class Best {
public int generations; //最佳適應值代號
public String str; //最佳染色體
public double fitness; //最佳適應值
}
public class SGAFrame extends JFrame {
private JTextArea textArea;
private String str = "";
private Best best = null; //最佳染色體
private String[] ipop = new String[10]; //染色體
private int gernation = 0; //染色體代號
public static final int GENE = 22; //基因數
/**
* Launch the application
* @param args
*/
public static void main(String args[]) {
try {
SGAFrame frame = new SGAFrame();
frame.setVisible(true);
} catch (Exception e) {
e.printStackTrace();
}
}
/**
* Create the frame
*/
public SGAFrame() {
super();
this.ipop = inialPops();
getContentPane().setLayout(null);
setBounds(100, 100, 461, 277);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
final JLabel label = new JLabel();
label.setText("X的區間:");
label.setBounds(23, 10, 88, 15);
getContentPane().add(label);
final JLabel label_1 = new JLabel();
label_1.setText("[-255,255]");
label_1.setBounds(92, 10, 84, 15);
getContentPane().add(label_1);
final JButton button = new JButton();
button.addActionListener(new ActionListener() {
public void actionPerformed(final ActionEvent e) {
SGAFrame s = new SGAFrame();
str = str + s.process() + "\n";
textArea.setText(str);
}
});
button.setText("求最小值");
button.setBounds(323, 27, 99, 23);
getContentPane().add(button);
final JLabel label_2 = new JLabel();
label_2.setText("利用標准遺傳演算法求解函數f(x)=(x-5)*(x-5)的最小值:");
label_2.setBounds(23, 31, 318, 15);
getContentPane().add(label_2);
final JPanel panel = new JPanel();
panel.setLayout(new BorderLayout());
panel.setBounds(23, 65, 399, 164);
getContentPane().add(panel);
final JScrollPane scrollPane = new JScrollPane();
panel.add(scrollPane, BorderLayout.CENTER);
textArea = new JTextArea();
scrollPane.setViewportView(textArea);
//
}
/**
* 初始化一條染色體(用二進制字元串表示)
* @return 一條染色體
*/
private String inialPop() {
String res = "";
for (int i = 0; i < GENE; i++) {
if (Math.random() > 0.5) {
res += "0";
} else {
res += "1";
}
}
return res;
}
/**
* 初始化一組染色體
* @return 染色體組
*/
private String[] inialPops() {
String[] ipop = new String[10];
for (int i = 0; i < 10; i++) {
ipop[i] = inialPop();
}
return ipop;
}
/**
* 將染色體轉換成x的值
* @param str 染色體
* @return 染色體的適應值
*/
private double calculatefitnessvalue(String str) {
int b = Integer.parseInt(str, 2);
//String str1 = "" + "/n";
double x = -255 + b * (255 - (-255)) / (Math.pow(2, GENE) - 1);
//System.out.println("X = " + x);
double fitness = -(x - 5) * (x - 5);
//System.out.println("f(x)=" + fitness);
//str1 = str1 + "X=" + x + "/n"
//+ "f(x)=" + "fitness" + "/n";
//textArea.setText(str1);
return fitness;
}
/**
* 計算群體上每個個體的適應度值;
* 按由個體適應度值所決定的某個規則選擇將進入下一代的個體;
*/
private void select() {
double evals[] = new double[10]; // 所有染色體適應值
double p[] = new double[10]; // 各染色體選擇概率
double q[] = new double[10]; // 累計概率
double F = 0; // 累計適應值總和
for (int i = 0; i < 10; i++) {
evals[i] = calculatefitnessvalue(ipop[i]);
if (best == null) {
best = new Best();
best.fitness = evals[i];
best.generations = 0;
best.str = ipop[i];
} else {
if (evals[i] > best.fitness) // 最好的記錄下來
{
best.fitness = evals[i];
best.generations = gernation;
best.str = ipop[i];
}
}
F = F + evals[i]; // 所有染色體適應值總和
}
for (int i = 0; i < 10; i++) {
p[i] = evals[i] / F;
if (i == 0)
q[i] = p[i];
else {
q[i] = q[i - 1] + p[i];
}
}
for (int i = 0; i < 10; i++) {
double r = Math.random();
if (r <= q[0]) {
ipop[i] = ipop[0];
} else {
for (int j = 1; j < 10; j++) {
if (r < q[j]) {
ipop[i] = ipop[j];
break;
}
}
}
}
}
/**
* 交叉操作
* 交叉率為25%,平均為25%的染色體進行交叉
*/
private void cross() {
String temp1, temp2;
for (int i = 0; i < 10; i++) {
if (Math.random() < 0.25) {
double r = Math.random();
int pos = (int) (Math.round(r * 1000)) % GENE;
if (pos == 0) {
pos = 1;
}
temp1 = ipop[i].substring(0, pos)
+ ipop[(i + 1) % 10].substring(pos);
temp2 = ipop[(i + 1) % 10].substring(0, pos)
+ ipop[i].substring(pos);
ipop[i] = temp1;
ipop[(i + 1) / 10] = temp2;
}
}
}
/**
* 基因突變操作
* 1%基因變異m*pop_size 共180個基因,為了使每個基因都有相同機會發生變異,
* 需要產生[1--180]上均勻分布的
*/
private void mutation() {
for (int i = 0; i < 4; i++) {
int num = (int) (Math.random() * GENE * 10 + 1);
int chromosomeNum = (int) (num / GENE) + 1; // 染色體號
int mutationNum = num - (chromosomeNum - 1) * GENE; // 基因號
if (mutationNum == 0)
mutationNum = 1;
chromosomeNum = chromosomeNum - 1;
if (chromosomeNum >= 10)
chromosomeNum = 9;
//System.out.println("變異前" + ipop[chromosomeNum]);
String temp;
if (ipop[chromosomeNum].charAt(mutationNum - 1) == '0') {
if (mutationNum == 1) {
temp = "1" + ipop[chromosomeNum].substring
(mutationNum);
} else {
if (mutationNum != GENE) {
temp = ipop[chromosomeNum].substring(0, mutationNum -
1) + "1" + ipop
[chromosomeNum].substring(mutationNum);
} else {
temp = ipop[chromosomeNum].substring(0, mutationNum -
1) + "1";
}
}
} else {
if (mutationNum == 1) {
temp = "0" + ipop[chromosomeNum].substring
(mutationNum);
} else {
if (mutationNum != GENE) {
temp = ipop[chromosomeNum].substring(0, mutationNum -
1) + "0" + ipop
[chromosomeNum].substring(mutationNum);
} else {
temp = ipop[chromosomeNum].substring(0, mutationNum -
1) + "1";
}
}
}
ipop[chromosomeNum] = temp;
//System.out.println("變異後" + ipop[chromosomeNum]);
}
}
/**
* 執行遺傳演算法
*/
public String process() {
String str = "";
for (int i = 0; i < 10000; i++) {
this.select();
this.cross();
this.mutation();
gernation = i;
}
str = "最小值" + best.fitness + ",第" + best.generations + "個染色體"+best.str;
return str;
}
}
『柒』 遺傳演算法
例如:[1,2,3],[1,3,2],[3,2,1]均是函數 3x+4y+5z<100 的可行解(代進去成立即為可行解),那麼這些可行解在遺傳演算法中均稱為「染色體」。可行解由 3 個元素構成,每個元素都稱為染色體的一個基因。
遺傳演算法在運行過程中會進行 N 次迭代,每次迭代都會生成若干條染色體。適應度函數會給本次迭代中生成的所有染色體打個分,來評判這些染色體的適應度,然後將適應度低的染色體淘汰,只保留適應度高的染色體,從而講過若干次迭代後染色體的質量將越來越好。
遺傳演算法每次迭代會生成 N 條染色體,在遺傳演算法中一次迭代被稱為一次進化。每次進化新的染色體生成的方法——交叉。
每一次進化完成後,都要計算每一條染色體的適應度+適應度概率。在交叉過程中就需要根據這個概率來選擇父母染色體。適應度高的染色體被選中的概率越高。(這就是遺傳演算法能夠保留優良基因的原因)
交叉能保證每次進化留下優良的基因,但它僅僅是對原有的結果集進行選擇,基因還是那麼幾個,只不過交換了它們的順序。這只能保證 N 次進化後,計算結果更接近於局部最優解,而永遠沒辦法達到全局最優解(?????),為了解決這個問題,需引入變異。
假設每次進化都需要生成 N 條染色體,那麼每次進化中,通過交叉方式需要生成 N-M 條,剩餘的 M 條染色體通過復制上一代適應度最高的 M 條染色體而來。
本文的目標是使所有任務的總處理時間最少,時間越短適應度越大。適應度 = 1 / 所有任務的總處理時間
將任務從 0 開始編號,用一個一維數組存儲每個任務的時長
tasks[i] :表第 i 個任務的長度。
第 0 個任務的長度為 2;
第 1 個任務的長度為 4;
第 2 個任務的長度為 6;
第 3 個任務的長度為 8;
將處理器節點從 0 開始編號,用一個一維數組存儲每個處理器的處理速度(單位時間內可處理的長度)
nodes[i] 表第 i 個節點的處理速度。
第 0 個節點的處理速度為 2;
第 1 個節點的處理速度為 1。
timeMatrix[i][j] 表第 i 個任務在第 j 個節點上處理的話,所需處理時間。
一個可行解就是一個染色體,就是一個一維數組
chromosome[i]=j 表將第 i 個任務分配到節點 j 上處理(任務編號從 0 開始;節點編號從 0 開始)
將任務 0 分配給 3 號節點處理;
將任務 1 分配給 2 號節點處理;
將任務 2 分配給 1 號節點處理;
將任務 3 分配給 0 號節點處理。
記錄本次進化生成的 N 條染色體的適應度,將染色體從 0 開始編號。
adaptablility[i] 表第 i 個染色體的適應度
selectionProbability[i] 表第 i 個染色體的適應度概率,所有染色體的適應度概率和為 1 。
java中PriorityQueue優先順序隊列使用方法
第 2 次迭代結果
第 100 次迭代結果