⑴ java 多線程有幾種實現方法
1、繼承Thread類實現多線程
繼承Thread類的方法盡管被我列為一種多線程實現方式,但Thread本質上也是實現了Runnable介面的一個實例,它代表一個線程的實例,並且,啟動線程的唯一方法就是通過Thread類的start()實例方法。start()方法是一個native方法,它將啟動一個新線程,並執行run()方法。這種方式實現多線程很簡單,通過自己的類直接extend Thread,並復寫run()方法,就可以啟動新線程並執行自己定義的run()方法。例如:
[java] view plain
public class MyThread extends Thread {
public void run() {
System.out.println("MyThread.run()");
}
}
在合適的地方啟動線程如下:
[java] view plain
MyThread myThread1 = new MyThread();
MyThread myThread2 = new MyThread();
myThread1.start();
myThread2.start();
2、實現Runnable介面方式實現多線程
如果自己的類已經extends另一個類,就無法直接extends Thread,此時,必須實現一個Runnable介面,如下:
[java] view plain
public class MyThread extends OtherClass implements Runnable {
public void run() {
System.out.println("MyThread.run()");
}
}
為了啟動MyThread,需要首先實例化一個Thread,並傳入自己的MyThread實例:
[java] view plain
MyThread myThread = new MyThread();
Thread thread = new Thread(myThread);
thread.start();
事實上,當傳入一個Runnable target參數給Thread後,Thread的run()方法就會調用target.run(),參考JDK源代碼:
[java] view plain
public void run() {
if (target != null) {
target.run();
}
}
3、使用ExecutorService、Callable、Future實現有返回結果的多線程
ExecutorService、Callable、Future這個對象實際上都是屬於Executor框架中的功能類。想要詳細了解Executor框架的可以訪問http://www.javaeye.com/topic/366591 ,這裡面對該框架做了很詳細的解釋。返回結果的線程是在JDK1.5中引入的新特徵,確實很實用,有了這種特徵我就不需要再為了得到返回值而大費周折了,而且即便實現了也可能漏洞百出。
可返回值的任務必須實現Callable介面,類似的,無返回值的任務必須Runnable介面。執行Callable任務後,可以獲取一個Future的對象,在該對象上調用get就可以獲取到Callable任務返回的Object了,再結合線程池介面ExecutorService就可以實現傳說中有返回結果的多線程了。下面提供了一個完整的有返回結果的多線程測試例子,在JDK1.5下驗證過沒問題可以直接使用。
⑵ 在Java 中多線程的實現方法有哪些,如何使用
Java多線程的創建及啟動
Java中線程的創建常見有如三種基本形式
1.繼承Thread類,重寫該類的run()方法。
復制代碼
1 class MyThread extends Thread {
2
3 private int i = 0;
4
5 @Override
6 public void run() {
7 for (i = 0; i < 100; i++) {
8 System.out.println(Thread.currentThread().getName() + " " + i);
9 }
10 }
11 }
復制代碼
復制代碼
1 public class ThreadTest {
2
3 public static void main(String[] args) {
4 for (int i = 0; i < 100; i++) {
5 System.out.println(Thread.currentThread().getName() + " " + i);
6 if (i == 30) {
7 Thread myThread1 = new MyThread(); // 創建一個新的線程 myThread1 此線程進入新建狀態
8 Thread myThread2 = new MyThread(); // 創建一個新的線程 myThread2 此線程進入新建狀態
9 myThread1.start(); // 調用start()方法使得線程進入就緒狀態
10 myThread2.start(); // 調用start()方法使得線程進入就緒狀態
11 }
12 }
13 }
14 }
復制代碼
如上所示,繼承Thread類,通過重寫run()方法定義了一個新的線程類MyThread,其中run()方法的方法體代表了線程需要完成的任務,稱之為線程執行體。當創建此線程類對象時一個新的線程得以創建,並進入到線程新建狀態。通過調用線程對象引用的start()方法,使得該線程進入到就緒狀態,此時此線程並不一定會馬上得以執行,這取決於CPU調度時機。
2.實現Runnable介面,並重寫該介面的run()方法,該run()方法同樣是線程執行體,創建Runnable實現類的實例,並以此實例作為Thread類的target來創建Thread對象,該Thread對象才是真正的線程對象。
復制代碼
1 class MyRunnable implements Runnable {
2 private int i = 0;
3
4 @Override
5 public void run() {
6 for (i = 0; i < 100; i++) {
7 System.out.println(Thread.currentThread().getName() + " " + i);
8 }
9 }
10 }
復制代碼
復制代碼
1 public class ThreadTest {
2
3 public static void main(String[] args) {
4 for (int i = 0; i < 100; i++) {
5 System.out.println(Thread.currentThread().getName() + " " + i);
6 if (i == 30) {
7 Runnable myRunnable = new MyRunnable(); // 創建一個Runnable實現類的對象
8 Thread thread1 = new Thread(myRunnable); // 將myRunnable作為Thread target創建新的線程
9 Thread thread2 = new Thread(myRunnable);
10 thread1.start(); // 調用start()方法使得線程進入就緒狀態
11 thread2.start();
12 }
13 }
14 }
15 }
復制代碼
相信以上兩種創建新線程的方式大家都很熟悉了,那麼Thread和Runnable之間到底是什麼關系呢?我們首先來看一下下面這個例子。
復制代碼
1 public class ThreadTest {
2
3 public static void main(String[] args) {
4 for (int i = 0; i < 100; i++) {
5 System.out.println(Thread.currentThread().getName() + " " + i);
6 if (i == 30) {
7 Runnable myRunnable = new MyRunnable();
8 Thread thread = new MyThread(myRunnable);
9 thread.start();
10 }
11 }
12 }
13 }
14
15 class MyRunnable implements Runnable {
16 private int i = 0;
17
18 @Override
19 public void run() {
20 System.out.println("in MyRunnable run");
21 for (i = 0; i < 100; i++) {
22 System.out.println(Thread.currentThread().getName() + " " + i);
23 }
24 }
25 }
26
27 class MyThread extends Thread {
28
29 private int i = 0;
30
31 public MyThread(Runnable runnable){
32 super(runnable);
33 }
34
35 @Override
36 public void run() {
37 System.out.println("in MyThread run");
38 for (i = 0; i < 100; i++) {
39 System.out.println(Thread.currentThread().getName() + " " + i);
40 }
41 }
42 }
復制代碼
同樣的,與實現Runnable介面創建線程方式相似,不同的地方在於
1 Thread thread = new MyThread(myRunnable);
那麼這種方式可以順利創建出一個新的線程么?答案是肯定的。至於此時的線程執行體到底是MyRunnable介面中的run()方法還是MyThread類中的run()方法呢?通過輸出我們知道線程執行體是MyThread類中的run()方法。其實原因很簡單,因為Thread類本身也是實現了Runnable介面,而run()方法最先是在Runnable介面中定義的方法。
1 public interface Runnable {
2
3 public abstract void run();
4
5 }
我們看一下Thread類中對Runnable介面中run()方法的實現:
復制代碼
@Override
public void run() {
if (target != null) {
target.run();
}
}
復制代碼
也就是說,當執行到Thread類中的run()方法時,會首先判斷target是否存在,存在則執行target中的run()方法,也就是實現了Runnable介面並重寫了run()方法的類中的run()方法。但是上述給到的列子中,由於多態的存在,根本就沒有執行到Thread類中的run()方法,而是直接先執行了運行時類型即MyThread類中的run()方法。
3.使用Callable和Future介面創建線程。具體是創建Callable介面的實現類,並實現clall()方法。並使用FutureTask類來包裝Callable實現類的對象,且以此FutureTask對象作為Thread對象的target來創建線程。
看著好像有點復雜,直接來看一個例子就清晰了。
復制代碼
1 public class ThreadTest {
2
3 public static void main(String[] args) {
4
5 Callable<Integer> myCallable = new MyCallable(); // 創建MyCallable對象
6 FutureTask<Integer> ft = new FutureTask<Integer>(myCallable); //使用FutureTask來包裝MyCallable對象
7
8 for (int i = 0; i < 100; i++) {
9 System.out.println(Thread.currentThread().getName() + " " + i);
10 if (i == 30) {
11 Thread thread = new Thread(ft); //FutureTask對象作為Thread對象的target創建新的線程
12 thread.start(); //線程進入到就緒狀態
13 }
14 }
15
16 System.out.println("主線程for循環執行完畢..");
17
18 try {
19 int sum = ft.get(); //取得新創建的新線程中的call()方法返回的結果
20 System.out.println("sum = " + sum);
21 } catch (InterruptedException e) {
22 e.printStackTrace();
23 } catch (ExecutionException e) {
24 e.printStackTrace();
25 }
26
27 }
28 }
29
30
31 class MyCallable implements Callable<Integer> {
32 private int i = 0;
33
34 // 與run()方法不同的是,call()方法具有返回值
35 @Override
36 public Integer call() {
37 int sum = 0;
38 for (; i < 100; i++) {
39 System.out.println(Thread.currentThread().getName() + " " + i);
40 sum += i;
41 }
42 return sum;
43 }
44
45 }
復制代碼
首先,我們發現,在實現Callable介面中,此時不再是run()方法了,而是call()方法,此call()方法作為線程執行體,同時還具有返回值!在創建新的線程時,是通過FutureTask來包裝MyCallable對象,同時作為了Thread對象的target。那麼看下FutureTask類的定義:
1 public class FutureTask<V> implements RunnableFuture<V> {
2
3 //....
4
5 }
1 public interface RunnableFuture<V> extends Runnable, Future<V> {
2
3 void run();
4
5 }
於是,我們發現FutureTask類實際上是同時實現了Runnable和Future介面,由此才使得其具有Future和Runnable雙重特性。通過Runnable特性,可以作為Thread對象的target,而Future特性,使得其可以取得新創建線程中的call()方法的返回值。
執行下此程序,我們發現sum = 4950永遠都是最後輸出的。而「主線程for循環執行完畢..」則很可能是在子線程循環中間輸出。由CPU的線程調度機制,我們知道,「主線程for循環執行完畢..」的輸出時機是沒有任何問題的,那麼為什麼sum =4950會永遠最後輸出呢?
原因在於通過ft.get()方法獲取子線程call()方法的返回值時,當子線程此方法還未執行完畢,ft.get()方法會一直阻塞,直到call()方法執行完畢才能取到返回值。
上述主要講解了三種常見的線程創建方式,對於線程的啟動而言,都是調用線程對象的start()方法,需要特別注意的是:不能對同一線程對象兩次調用start()方法。
你好,本題已解答,如果滿意
請點右下角「採納答案」。
⑶ java如何實現多線程編程
1、public class MyThread extends Thread{//重寫run()方法public void run(){ //多線程要做的事}public static void main(String args[]){ MyThread m1 = new MyThread(); MyThread m2 = new MyThread(); m1.start(); m2.start();}} 2、public class NThread implements Runable{ //實現run()方法 public void run(){ //多線程要做的事 } public static void main(String args[]){ NThread nt = new NThread(); new Thread(nt,"nt1_name").start(); new Thread(nt,"nt2_name").start(); }}
⑷ 多線程的java 程序如何編寫
Java 給多線程編程提供了內置的支持。 一條線程指的是進程中一個單一順序的控制流,一個進程中可以並發多個線程,每條線程並行執行不同的任務。
⑸ 1. 寫出用Java編寫多線程程序的兩種常用方法
1、繼承Thread,然後生成對象
2、用類A實現runable介面,然後用你實現runnable的類A,生成Thread對象 Thread(A對象);
API 上說明如下:
創建新執行線程有兩種方法。一種方法是將類聲明為 Thread 的子類。該子類應重寫 Thread 類的
run 方法。接下來可以分配並啟動該子類的實例。例如,計算大於某一規定值的質數的線程可以寫成:
classPrimeThreadextendsThread{
longminPrime;
PrimeThread(longminPrime){
this.minPrime=minPrime;
}
publicvoidrun(){
//
...
}
}
然後,下列代碼會創建並啟動一個線程:
PrimeThreadp=newPrimeThread(143);
p.start();
創建線程的另一種方法是聲明實現 Runnable 介面的類。該類然後實現 run
方法。然後可以分配該類的實例,在創建 Thread 時作為一個參數來傳遞並啟動。採用這種風格的同一個例子如下所示:
implementsRunnable{
longminPrime;
PrimeRun(longminPrime){
this.minPrime=minPrime;
}
publicvoidrun(){
//
...
}
}
然後,下列代碼會創建並啟動一個線程:
rimeRunp=newPrimeRun(143);
newThread(p).start();
⑹ java實現多線程的兩種方法
Thread t1=new Thread(){
public void run(){
System.out.println("第一種方法");
}
};
t1.start();
Thread t2=new Thread(new Runnable() {
public void run() {
System.out.println("第二種方法,可實現同類下各線程數據共享");
}
});
t2.start();
⑺ java 如何實現多線程
線程間的通信方式
同步
這里講的同步是指多個線程通過synchronized關鍵字這種方式來實現線程間的通信。
參考示例:
public class MyObject {
synchronized public void methodA() {
//do something....
}
synchronized public void methodB() {
//do some other thing
}
}
public class ThreadA extends Thread {
private MyObject object;
//省略構造方法
@Override
public void run() {
super.run();
object.methodA();
}
}
public class ThreadB extends Thread {
private MyObject object;
//省略構造方法
@Override
public void run() {
super.run();
object.methodB();
}
}
public class Run {
public static void main(String[] args) {
MyObject object = new MyObject();
//線程A與線程B 持有的是同一個對象:object
ThreadA a = new ThreadA(object);
ThreadB b = new ThreadB(object);
a.start();
b.start();
}
}
由於線程A和線程B持有同一個MyObject類的對象object,盡管這兩個線程需要調用不同的方法,但是它們是同步執行的,比如:線程B需要等待線程A執行完了methodA()方法之後,它才能執行methodB()方法。這樣,線程A和線程B就實現了 通信。
這種方式,本質上就是「共享內存」式的通信。多個線程需要訪問同一個共享變數,誰拿到了鎖(獲得了訪問許可權),誰就可以執行。
⑻ 如何使用Java編寫多線程程序(1)
一、簡介1、什麼是線程要說線程,就必須先說說進程,進程就是程序的運行時的一個實例。線程呢可以看作單獨地佔有CPU時間來執行相應的代碼的。對早期的計算機(如DOS)而言,線程既是進程,進程既是進程,因為她是單線程的。當然一個程序可以是多線程的,多線程的各個線程看上去像是並行地獨自完成各自的工作,就像一台一台計算機上運行著多個處理機一樣。在多處理機計算機上實現多線程時,它們確實可以並行工作,而且採用適當的分時策略可以大大提高程序運行的效率。但是二者還是有較大的不同的,線程是共享地址空間的,也就是說多線程可以同時讀取相同的地址空間,並且利用這個空間進行交換數據。 2、為什麼要使用線程為什麼要使用多線程呢?學過《計算機體系結構》的人都知道。將順序執行程序和採用多線程並行執行程序相比,效率是可以大大地提高的。比如,有五個線程thread1, thread2, thread3, thread4, thread5,所耗的CPU時間分別為4,5,1,2,7。(假設CPU輪換周期為4個CPU時間,而且線程之間是彼此獨立的)順序執行需要花費1Array個CPU時間,而並行需要的時間肯定少於1Array個CPU時間,至於具體多少時間要看那些線程是可以同時執行的。這是在非常小規模的情況下,要是面對大規模的進程之間的交互的話,效率可以表現得更高。 3、java中是如何實現多線程的與其他語言不一樣的是,線程的觀念在java是語言中是重要的,根深蒂固的,因為在java語言中的線程系統是java語言自建的, java中有專門的支持多線程的API庫,所以你可以以最快的速度寫一個支持線程的程序。在使用java創建線程的時候,你可以生成一個Thread類或者他的子類對象,並給這個對象發送start()消息(程序可以向任何一個派生自 Runnable 介面的類對象發送 start() 消息的),這樣一來程序會一直執行,直到run返回為止,此時該線程就死掉了。在java語言中,線程有如下特點:§ 在一個程序中而言,主線程的執行位置就是main。而其他線程執行的位置,程序員是可以自定義的。值得注意的是對Applet也是一樣。 § 每個線程執行其代碼的方式都是一次順序執行的。 § 一個線程執行其代碼是與其他線程獨立開來的。如果諸線程之間又相互協作的話,就必須採用一定的交互機制。 § 前面已經說過,線程是共享地址空間的,如果控制不當,這里很有可能出現死鎖。 各線程之間是相互獨立的,那麼本地變數對一個線程而言就是完全獨立,私有的。所以呢,線程執行時,每個線程都有各自的本地變數拷貝。對象變數(instance variable)在線程之間是可以共享的,這也就是為什麼在java中共享數據對象是如此的好用,但是java線程不能夠武斷地訪問對象變數:他們是需要訪問數據對象的許可權的。二、准備知識 在分析這個例子之前,然我們先看看關於線程的幾個概念,上鎖,信號量,和java所提供的API。 上鎖對於大多數的程序而言,他們都需要線程之間相互的通訊來完成整個線程的生命周期,二實現線程之間同步的最簡單的辦法就是上鎖。為了防止相互關聯的兩個線程之間錯誤地訪問共享資源,線程需要在訪問資源的時候上鎖和解鎖,對於鎖而言,有讀鎖,寫鎖和讀寫鎖等不同的同步策略。在java中,所有的對象都有鎖;線程只需要使用synchronized關鍵字就可以獲得鎖。在任一時刻對於給定的類的實例,方法或同步的代碼塊只能被一個線程執行。這是因為代碼在執行之前要求獲得對象的鎖。 信號量通常情況下,多個線程所訪問為數不多的資源,那怎麼控制呢?一個比較非常經典而起非常簡單的辦法就是採用信號量機制。信號量機制的含義就是定義一個信號量,也就是說能夠提供的連接數;當有一個線程佔用了一個連接時,信號量就減一;當一個線程是放了連接時,信號量就加一。