導航:首頁 > 編程語言 > python爬蟲框架對比

python爬蟲框架對比

發布時間:2023-07-13 23:26:31

python編程基礎之(五)Scrapy爬蟲框架

經過前面四章的學習,我們已經可以使用Requests庫、Beautiful Soup庫和Re庫,編寫基本的Python爬蟲程序了。那麼這一章就來學習一個專業的網路爬蟲框架--Scrapy。沒錯,是框架,而不是像前面介紹的函數功能庫。

Scrapy是一個快速、功能強大的網路爬蟲框架。

可能大家還不太了解什麼是框架,爬蟲框架其實是實現爬蟲功能的一個軟體結構和功能組件的集合。

簡而言之, Scrapy就是一個爬蟲程序的半成品,可以幫助用戶實現專業的網路爬蟲。

使用Scrapy框架,不需要你編寫大量的代碼,Scrapy已經把大部分工作都做好了,允許你調用幾句代碼便自動生成爬蟲程序,可以節省大量的時間。

當然,框架所生成的代碼基本是一致的,如果遇到一些特定的爬蟲任務時,就不如自己使用Requests庫搭建來的方便了。

PyCharm安裝

測試安裝:

出現框架版本說明安裝成功。

掌握Scrapy爬蟲框架的結構是使用好Scrapy的重中之重!

先上圖:

整個結構可以簡單地概括為: 「5+2」結構和3條數據流

5個主要模塊(及功能):

(1)控制所有模塊之間的數據流。

(2)可以根據條件觸發事件。

(1)根據請求下載網頁。

(1)對所有爬取請求進行調度管理。

(1)解析DOWNLOADER返回的響應--response。

(2)產生爬取項--scraped item。

(3)產生額外的爬取請求--request。

(1)以流水線方式處理SPIDER產生的爬取項。

(2)由一組操作順序組成,類似流水線,每個操作是一個ITEM PIPELINES類型。

(3)清理、檢查和查重爬取項中的HTML數據並將數據存儲到資料庫中。

2個中間鍵:

(1)對Engine、Scheler、Downloader之間進行用戶可配置的控制。

(2)修改、丟棄、新增請求或響應。

(1)對請求和爬取項進行再處理。

(2)修改、丟棄、新增請求或爬取項。

3條數據流:

(1):圖中數字 1-2

1:Engine從Spider處獲得爬取請求--request。

2:Engine將爬取請求轉發給Scheler,用於調度。

(2):圖中數字 3-4-5-6

3:Engine從Scheler處獲得下一個要爬取的請求。

4:Engine將爬取請求通過中間件發送給Downloader。

5:爬取網頁後,Downloader形成響應--response,通過中間件發送給Engine。

6:Engine將收到的響應通過中間件發送給Spider處理。

(3):圖中數字 7-8-9

7:Spider處理響應後產生爬取項--scraped item。

8:Engine將爬取項發送給Item Pipelines。

9:Engine將爬取請求發送給Scheler。

任務處理流程:從Spider的初始爬取請求開始爬取,Engine控制各模塊數據流,不間斷從Scheler處獲得爬取請求,直至請求為空,最後到Item Pipelines存儲數據結束。

作為用戶,只需配置好Scrapy框架的Spider和Item Pipelines,也就是數據流的入口與出口,便可完成一個爬蟲程序的搭建。Scrapy提供了簡單的爬蟲命令語句,幫助用戶一鍵配置剩餘文件,那我們便來看看有哪些好用的命令吧。

Scrapy採用命令行創建和運行爬蟲

PyCharm打開Terminal,啟動Scrapy:

Scrapy基本命令行格式:

具體常用命令如下:

下面用一個例子來學習一下命令的使用:

1.建立一個Scrapy爬蟲工程,在已啟動的Scrapy中繼續輸入:

執行該命令,系統會在PyCharm的工程文件中自動創建一個工程,命名為pythonDemo。

2.產生一個Scrapy爬蟲,以教育部網站為例http://www.moe.gov.cn:

命令生成了一個名為demo的spider,並在Spiders目錄下生成文件demo.py。

命令僅用於生成demo.py文件,該文件也可以手動生成。

觀察一下demo.py文件:

3.配置產生的spider爬蟲,也就是demo.py文件:

4.運行爬蟲,爬取網頁:

如果爬取成功,會發現在pythonDemo下多了一個t20210816_551472.html的文件,我們所爬取的網頁內容都已經寫入該文件了。

以上就是Scrapy框架的簡單使用了。

Request對象表示一個HTTP請求,由Spider生成,由Downloader執行。

Response對象表示一個HTTP響應,由Downloader生成,有Spider處理。

Item對象表示一個從HTML頁面中提取的信息內容,由Spider生成,由Item Pipelines處理。Item類似於字典類型,可以按照字典類型來操作。

⑵ Python有哪些常見的,好用的爬蟲框架

網路爬蟲的抓取策略有很多種,按照系統結構和實現技術,大致可以分為以下幾種:通用網路爬蟲(GeneralPurposeWebCrawler)、聚焦網路爬蟲(FocusedWebCrawler)、增量式網路爬蟲(IncrementalWebCrawler)、深層網路爬蟲(DeepWebCrawler)。
增量式網路爬蟲是指對已下載網頁採取增量式更新和只爬行新產生的或者已經發生變化網頁的爬蟲,它能夠在一定程度上保證所爬行的頁面是盡可能新的頁面。
一般網路爬蟲的爬行范圍和數量很大,爬行速度和存儲空間要求很高,爬行頁面的順序也比較低。同時,由於需要刷新的頁面太多,通常採用並行工作,但刷新一頁需要很長時間。
聚焦網路爬蟲是指選擇性地爬行與預定義主題相關的網路爬蟲。與普通網路爬蟲相比,聚焦爬蟲只需爬行與主題相關的網頁,大大節省了硬體和網路資源,保存的網頁也因數量少而更新快,還能很好地滿足一些特定人群對特定領域信息的需求。
DeepWeb爬蟲,也就是深層網頁爬蟲,在深層網頁容量是表層網頁的數百倍,是互聯網上最大、發展最快的新信息資源。

⑶ python都有哪些框架

這要看你說的是那些方面的框架

像web框架 flask、django、Tornado
爬蟲 Scrapy、Crawley、Portia
框架多得是,要你需要什麼框架

⑷ Python中的爬蟲框架有哪些呢

實現爬蟲技術的編程環境有很多種,Java、Python、C++等都可以用來爬蟲。但很多人選擇Python來寫爬蟲,為什麼呢?因為Python確實很適合做爬蟲,豐富的第三方庫十分強大,簡單幾行代碼便可實現你想要的功能。更重要的,Python也是數據挖掘和分析的好能手。那麼,Python爬蟲一般用什麼框架比較好?
一般來講,只有在遇到比較大型的需求時,才會使用Python爬蟲框架。這樣的做的主要目的,是為了方便管理以及擴展。本文我將向大家推薦十個Python爬蟲框架。
1、Scrapy:Scrapy是一個為了爬取網站數據,提取結構性數據而編寫的應用框架。 可以應用在包括數據挖掘,信息處理或存儲歷史數據等一系列的程序中。它是很強大的爬蟲框架,可以滿足簡單的頁面爬取,比如可以明確獲知url pattern的情況。用這個框架可以輕松爬下來如亞馬遜商品信息之類的數據。但是對於稍微復雜一點的頁面,如weibo的頁面信息,這個框架就滿足不了需求了。它的特性有:HTML, XML源數據 選擇及提取 的內置支持;提供了一系列在spider之間共享的可復用的過濾器(即 Item Loaders),對智能處理爬取數據提供了內置支持。
2、Crawley:高速爬取對應網站的內容,支持關系和非關系資料庫,數據可以導出為JSON、XML等。
3、Portia:是一個開源可視化爬蟲工具,可讓使用者在不需要任何編程知識的情況下爬取網站!簡單地注釋自己感興趣的頁面,Portia將創建一個蜘蛛來從類似的頁面提取數據。簡單來講,它是基於scrapy內核;可視化爬取內容,不需要任何開發專業知識;動態匹配相同模板的內容。

4、newspaper:可以用來提取新聞、文章和內容分析。使用多線程,支持10多種語言等。作者從requests庫的簡潔與強大得到靈感,使用Python開發的可用於提取文章內容的程序。支持10多種語言並且所有的都是unicode編碼。
5、Python-goose:Java寫的文章提取工具。Python-goose框架可提取的信息包括:文章主體內容、文章主要圖片、文章中嵌入的任何Youtube/Vimeo視頻、元描述、元標簽。
6、Beautiful Soup:名氣大,整合了一些常用爬蟲需求。它是一個可以從HTML或XML文件中提取數據的Python庫。它能夠通過你喜歡的轉換器實現慣用的文檔導航,查找,修改文檔的方式.Beautiful Soup會幫你節省數小時甚至數天的工作時間。Beautiful Soup的缺點是不能載入JS。
7、mechanize:它的優點是可以載入JS。當然它也有缺點,比如文檔嚴重缺失。不過通過官方的example以及人肉嘗試的方法,還是勉強能用的。
8、selenium:這是一個調用瀏覽器的driver,通過這個庫你可以直接調用瀏覽器完成某些操作,比如輸入驗證碼。Selenium是自動化測試工具,它支持各種瀏覽器,包括 Chrome,Safari,Firefox等主流界面式瀏覽器,如果在這些瀏覽器裡面安裝一個 Selenium 的插件,可以方便地實現Web界面的測試. Selenium支持瀏覽器驅動。Selenium支持多種語言開發,比如 Java,C,Ruby等等,PhantomJS 用來渲染解析JS,Selenium 用來驅動以及與Python的對接,Python進行後期的處理。
9、cola:是一個分布式的爬蟲框架,對於用戶來說,只需編寫幾個特定的函數,而無需關注分布式運行的細節。任務會自動分配到多台機器上,整個過程對用戶是透明的。項目整體設計有點糟,模塊間耦合度較高。
10、PySpider:一個國人編寫的強大的網路爬蟲系統並帶有強大的WebUI。採用Python語言編寫,分布式架構,支持多種資料庫後端,強大的WebUI支持腳本編輯器,任務監視器,項目管理器以及結果查看器。Python腳本控制,可以用任何你喜歡的html解析包。

⑸ python爬蟲用什麼框架

python爬蟲框架概述
爬蟲框架中比較好用的是 Scrapy 和PySpider。pyspider上手更簡單,操作更加簡便,因為它增加了 WEB 界面,寫爬蟲迅速,集成了phantomjs,可以用來抓取js渲染的頁面。Scrapy自定義程度高,比 PySpider更底層一些,適合學習研究,需要學習的相關知識多,不過自己拿來研究分布式和多線程等等是非常合適的。
PySpider
PySpider是binux做的一個爬蟲架構的開源化實現。主要的功能需求是:
抓取、更新調度多站點的特定的頁面
需要對頁面進行結構化信息提取
靈活可擴展,穩定可監控
pyspider的設計基礎是:以python腳本驅動的抓取環模型爬蟲
通過python腳本進行結構化信息的提取,follow鏈接調度抓取控制,實現最大的靈活性
通過web化的腳本編寫、調試環境。web展現調度狀態
抓取環模型成熟穩定,模塊間相互獨立,通過消息隊列連接,從單進程到多機分布式靈活拓展
pyspider的架構主要分為 scheler(調度器), fetcher(抓取器), processor(腳本執行):
各個組件間使用消息隊列連接,除了scheler是單點的,fetcher 和 processor 都是可以多實例分布式部署的。 scheler 負責整體的調度控制
任務由 scheler 發起調度,fetcher 抓取網頁內容, processor 執行預先編寫的python腳本,輸出結果或產生新的提鏈任務(發往 scheler),形成閉環。
每個腳本可以靈活使用各種python庫對頁面進行解析,使用框架API控制下一步抓取動作,通過設置回調控制解析動作。
Scrapy
Scrapy是一個為了爬取網站數據,提取結構性數據而編寫的應用框架。 可以應用在包括數據挖掘,信息處理或存儲歷史數據等一系列的程序中。
其最初是為了頁面抓取 (更確切來說, 網路抓取 )所設計的, 也可以應用在獲取API所返回的數據(例如 Amazon Associates Web Services ) 或者通用的網路爬蟲。Scrapy用途廣泛,可以用於數據挖掘、監測和自動化測試
Scrapy主要包括了以下組件:
引擎(Scrapy): 用來處理整個系統的數據流處理, 觸發事務(框架核心)
調度器(Scheler): 用來接受引擎發過來的請求, 壓入隊列中, 並在引擎再次請求的時候返回. 可以想像成一個URL(抓取網頁的網址或者說是鏈接)的優先隊列, 由它來決定下一個要抓取的網址是什麼, 同時去除重復的網址
下載器(Downloader): 用於下載網頁內容, 並將網頁內容返回給蜘蛛(Scrapy下載器是建立在twisted這個高效的非同步模型上的)
爬蟲(Spiders): 爬蟲是主要幹活的, 用於從特定的網頁中提取自己需要的信息, 即所謂的實體(Item)。用戶也可以從中提取出鏈接,讓Scrapy繼續抓取下一個頁面
項目管道(Pipeline): 負責處理爬蟲從網頁中抽取的實體,主要的功能是持久化實體、驗證實體的有效性、清除不需要的信息。當頁面被爬蟲解析後,將被發送到項目管道,並經過幾個特定的次序處理數據。
下載器中間件(Downloader Middlewares): 位於Scrapy引擎和下載器之間的框架,主要是處理Scrapy引擎與下載器之間的請求及響應。
爬蟲中間件(Spider Middlewares): 介於Scrapy引擎和爬蟲之間的框架,主要工作是處理蜘蛛的響應輸入和請求輸出。
調度中間件(Scheler Middewares): 介於Scrapy引擎和調度之間的中間件,從Scrapy引擎發送到調度的請求和響應。
Scrapy運行流程大概如下:
首先,引擎從調度器中取出一個鏈接(URL)用於接下來的抓取
引擎把URL封裝成一個請求(Request)傳給下載器,下載器把資源下載下來,並封裝成應答包(Response)
然後,爬蟲解析Response
若是解析出實體(Item),則交給實體管道進行進一步的處理。
若是解析出的是鏈接(URL),則把URL交給Scheler等待抓取

⑹ python的爬蟲框架有哪些

實現爬蟲技術的編程環境有很多種,Java、Python、C++等都可以用來爬蟲。但很多人選擇Python來寫爬蟲,為什麼呢?因為Python確實很適合做爬蟲,豐富的第三方庫十分強大,簡單幾行代碼便可實現你想要的功能。更重要的,Python也是數據挖掘和分析的好能手。
高效的Python爬蟲框架。分享給大家。
1.Scrapy
Scrapy是一個為了爬取網站數據,提取結構性數據而編寫的應用框架。 可以應用在包括數據挖掘,信息處理或存儲歷史數據等一系列的程序中。。用這個框架可以輕松爬下來如亞馬遜商品信息之類的數據。
2.PySpider
pyspider 是一個用python實現的功能強大的網路爬蟲系統,能在瀏覽器界面上進行腳本的編寫,功能的調度和爬取結果的實時查看,後端使用常用的資料庫進行爬取結果的存儲,還能定時設置任務與任務優先順序等。
3.Crawley
Crawley可以高速爬取對應網站的內容,支持關系和非關系資料庫,數據可以導出為JSON、XML等。
4、Portia:是一個開源可視化爬蟲工具,可讓使用者在不需要任何編程知識的情況下爬取網站!簡單地注釋自己感興趣的頁面,Portia將創建一個蜘蛛來從類似的頁面提取數據。簡單來講,它是基於scrapy內核;可視化爬取內容,不需要任何開發專業知識;動態匹配相同模板的內容。
5.Newspaper
Newspaper可以用來提取新聞、文章和內容分析。使用多線程,支持10多種語言等。
6、Python-goose:Java寫的文章提取工具。Python-goose框架可提取的信息包括:文章主體內容、文章主要圖片、文章中嵌入的任何Youtube/Vimeo視頻、元描述、元標簽。
7.Grab

Grab是一個用於構建Web刮板的Python框架。藉助Grab,您可以構建各種復雜的網頁抓取工具,從簡單的5行腳本到處理數百萬個網頁的復雜非同步網站抓取工具
8、selenium:這是一個調用瀏覽器的driver,通過這個庫你可以直接調用瀏覽器完成某些操作,比如輸入驗證碼。

閱讀全文

與python爬蟲框架對比相關的資料

熱點內容
新桑塔納安卓大屏導航怎麼拆 瀏覽:380
程序員送給女友的禮物 瀏覽:428
ftp命令行查看文件數量 瀏覽:496
linux查看設備的命令 瀏覽:827
pythongolang學哪個 瀏覽:349
金蝶加密鎖驅動下載 瀏覽:300
python編程基於自然語言處理庫 瀏覽:133
javaseruntime 瀏覽:902
cad如何將命令放在滑鼠旁邊 瀏覽:746
程序員對粉色 瀏覽:125
編譯器命令java 瀏覽:989
雲伺服器怎麼數據同步 瀏覽:685
c盤文件修復命令語 瀏覽:966
文件夾中文件怎麼上下移動 瀏覽:831
魅族手機用什麼軟體解壓 瀏覽:763
加密幣糖果 瀏覽:300
c編譯調試是什麼 瀏覽:631
安裝mysql服務命令 瀏覽:734
程序員cpa考試 瀏覽:200
汕頭買房用什麼app好 瀏覽:23