A. python是什麼
Python是一種面向對象的解釋型計算機程序設計語言,具有豐富和強大的庫。它常被昵稱為膠水語言,能夠把用其他語言製作的各種模塊(尤其是C/C++)很輕松地聯結在一起。
Python是一種面向對象的解釋型計算機程序設計語言,由荷蘭人Guido van Rossum於1989年發明,第一個公開發行版發行於1991年。
Python作為當下最熱門的編程語言,在2018年世界腳本語言排行榜中位列榜首,已經成為了多個領域的首選語言。
發展歷程
自從20世紀90年代初Python語言誕生至今,它已被逐漸廣泛應用於系統管理任務的處理和Web編程。Python的創始人為Guido van Rossum。1989年聖誕節期間,在阿姆斯特丹,Guido為了打發聖誕節的無趣,決心開發一個新的腳本解釋程序,作為ABC 語言的一種繼承。之所以選中Python(大蟒蛇的意思)作為該編程語言的名字,是取自英國20世紀70年代首播的電視喜劇《蒙提.派森乾的飛行馬戲團》(Monty Python's Flying Circus)。ABC是由Guido參加設計的一種教學語言。就Guido本人看來,ABC 這種語言非常優美和強大,是專門為非專業程序員設計的。但是ABC語言並沒有成功,究其原因,Guido 認為是其非開放造成的。Guido 決心在Python 中避免這一錯誤。同時,他還想實現在ABC 中閃現過但未曾實現的東西。就這樣,Python在Guido手中誕生了。可以說,Python是從ABC發展起來,主要受到了Mola-3(另一種相當優美且強大的語言,為小型團體所設計的)的影響。並且結合了Unix shell和C的習慣。Python已經成為最受歡迎的程序設計語言之一。自從2004年以後,python的使用率呈線性增長。2011年1月,它被TIOBE編程語言排行榜評為2010年度語言.由於Python語言的簡潔性、易讀性以及可擴展性,在國外用Python做科學計算的研究機構日益增多,一些知名大學已經採用Python來教授程序設計課程。例如卡耐基梅隆大學的編程基礎、麻省理工學院的計算機科學及編程導論就使用Python語言講授。眾多開源的科學計算軟體包都提供了Python的調用介面,例如著名的計算機視覺庫OpenCV、三維可視化庫VTK、醫學圖像處理庫ITK。而Python專用的科學計算擴展庫就更多了,例如如下3個十分經典的科學計算擴展庫:NumPy、SciPy和matplotlib,它們分別為Python提供了快速數組處理、數值運算以及繪圖功能。因此Python語言及其眾多的擴展庫所構成的開發環境十分適合工程技術、科研人員處理實驗數據、製作圖表,甚至開發科學計算應用程序。2018年3月,該語言作者在郵件列表上宣布Python 2.7將於2020年1月1日終止支持。用戶如果想要在這個日期之後繼續得到與Python 2.7有關的支持,則需要付費給商業供應商。
Python優點
1. 簡單
我們可以說Python是簡約的語言,非常易於讀寫,遇到問題時,程序員可以把更多的注意力放在問題本身上,而不用花費太多精力在程序語言、語法上。
2. 免費
Python是免費開源的。這意味著程序員不用花錢,就可以共享、復制和交換它,這也幫助Python形成了強壯的社區,使用它更加完善,技術發展更快。專業人士可以在社區和初學者分享他們的知識和經驗。
3. 兼容性
Python兼容眾多平台,所以開發者不會遇到使用其他語言時常會遇到的困擾。
4. 面向對象
Python既支持面向過程,也支持面向對象編程。在面向過程編程中,程序員復用代碼,在面向對象編程中,使用基於數據和函數的對象。盡管面向對象的程序語言通常十分復雜,Python卻設法保持簡潔。
5. 庫
Python社區創造了一大堆各種各樣的Python庫。在他們的幫助下,你可以管理文檔,執行單元測試、資料庫、web瀏覽器、電子郵件、密碼學、圖形用戶界面和更多的東西。所有東西包括在標准庫,然而,除了它,還有很多其他的庫。
Python語言的用途
多年來,Python在各種流行編程語言中一直排名靠前。它幾乎可以適用任何開發,它旨在提高程序員的開發效率而不在於他們編的代碼。Python適用於網站、桌面應用開發,自動化腳本,復雜計算系統,科學計算,生命支持管理系統,物聯網,游戲,機器人,自然語言處理等很多方面。而且,既使對於那些從沒有開發經驗的人來講,Python的代碼也是簡潔易懂的。由於Python程序代碼簡單,所以和與其他程序語言相比,後期的程序維護更容易,更舒心。從商業角度來看,需要的成本降低,程序員的效率提高。
B. 請大俠給推薦幾個python搞的開源的項目的例子
Python的開源項目很多呀
比如Twisted,Tornado做web伺服器
wxPython做GUI
Django做網站
還有做科學計算的NumPy等等
這些都是很大的,其他中小型的非常多,在GitHub上有很多可以搜索到。
另外還有基於Python的一些網站,比如很著名的豆瓣,知乎,果殼。
另外非常多網頁游戲的後端都是用Python實現的。雖然這些不開源,但是基本的技術都可以在開源項目里找到原型。
C. python機器學習庫怎麼使用
1. Scikit-learn(重點推薦)
www .github .com/scikit-learn/scikit-learn
Scikit-learn 是基於Scipy為機器學習建造的的一個Python模塊,他的特色就是多樣化的分類,回歸和聚類的演算法包括支持向量機,邏輯回歸,樸素貝葉斯分類器,隨機森林,Gradient Boosting,聚類演算法和DBSCAN。而且也設計出了Python numerical和scientific libraries Numpy and Scipy2、Keras(深度學習)
https://github.com/fchollet/keras
Keras是基於Theano的一個深度學習框架,它的設計參考了Torch,用Python語言編寫,是一個高度模塊化的神經網路庫,支持GPU和CPU。
3、Lasagne(深度學習)
不只是一個美味的義大利菜,也是一個和Keras有著相似功能的深度學習庫,但其在設計上與它們有些不同。
4.Pylearn2
www .github .com/lisa-lab/pylearn2
Pylearn是一個讓機器學習研究簡單化的基於Theano的庫程序。它把深度學習和人工智慧研究許多常用的模型以及訓練演算法封裝成一個單一的實驗包,如隨機梯度下降。
5.NuPIC
www .github .com/numenta/nupic
NuPIC是一個以HTM學習演算法為工具的機器智能平台。HTM是皮層的精確計算方法。HTM的核心是基於時間的持續學習演算法和儲存和撤銷的時空模式。NuPIC適合於各種各樣的問題,尤其是檢測異常和預測的流數據來源。
6. Nilearn
www .github .com/nilearn/nilearn
Nilearn 是一個能夠快速統計學習神經影像數據的Python模塊。它利用Python語言中的scikit-learn 工具箱和一些進行預測建模,分類,解碼,連通性分析的應用程序來進行多元的統計。
7.PyBrain
www .github .com/pybrain/pybrain
Pybrain是基於Python語言強化學習,人工智慧,神經網路庫的簡稱。 它的目標是提供靈活、容易使用並且強大的機器學習演算法和進行各種各樣的預定義的環境中測試來比較你的演算法。
8.Pattern
www .github .com/clips/pattern
Pattern 是Python語言下的一個網路挖掘模塊。它為數據挖掘,自然語言處理,網路分析和機器學習提供工具。它支持向量空間模型、聚類、支持向量機和感知機並且用KNN分類法進行分類。
9.Fuel
www .github .com/mila-udem/fuel
Fuel為你的機器學習模型提供數據。他有一個共享如MNIST, CIFAR-10 (圖片數據集), Google's One Billion Words (文字)這類數據集的介面。你使用他來通過很多種的方式來替代自己的數據。
10.Bob
www .github .com/idiap/bob
Bob是一個免費的信號處理和機器學習的工具。它的工具箱是用Python和C++語言共同編寫的,它的設計目的是變得更加高效並且減少開發時間,它是由處理圖像工具,音頻和視頻處理、機器學習和模式識別的大量軟體包構成的。
11.Skdata
www .github .com/jaberg/skdata
Skdata是機器學習和統計的數據集的庫程序。這個模塊對於玩具問題,流行的計算機視覺和自然語言的數據集提供標準的Python語言的使用。
12.MILK
www .github .com/luispedro/milk
MILK是Python語言下的機器學習工具包。它主要是在很多可得到的分類比如SVMS,K-NN,隨機森林,決策樹中使用監督分類法。 它還執行特徵選擇。 這些分類器在許多方面相結合,可以形成不同的例如無監督學習、密切關系金傳播和由MILK支持的K-means聚類等分類系統。
13.IEPY
www .github .com/machinalis/iepy
IEPY是一個專注於關系抽取的開源性信息抽取工具。它主要針對的是需要對大型數據集進行信息提取的用戶和想要嘗試新的演算法的科學家。
14.Quepy
www .github .com/machinalis/quepy
Quepy是通過改變自然語言問題從而在資料庫查詢語言中進行查詢的一個Python框架。他可以簡單的被定義為在自然語言和資料庫查詢中不同類型的問題。所以,你不用編碼就可以建立你自己的一個用自然語言進入你的資料庫的系統。
現在Quepy提供對於Sparql和MQL查詢語言的支持。並且計劃將它延伸到其他的資料庫查詢語言。
15.Hebel
www .github .com/hannes-brt/hebel
Hebel是在Python語言中對於神經網路的深度學習的一個庫程序,它使用的是通過PyCUDA來進行GPU和CUDA的加速。它是最重要的神經網路模型的類型的工具而且能提供一些不同的活動函數的激活功能,例如動力,涅斯捷羅夫動力,信號丟失和停止法。
16.mlxtend
www .github .com/rasbt/mlxtend
它是一個由有用的工具和日常數據科學任務的擴展組成的一個庫程序。
17.nolearn
www .github .com/dnouri/nolearn
這個程序包容納了大量能對你完成機器學習任務有幫助的實用程序模塊。其中大量的模塊和scikit-learn一起工作,其它的通常更有用。
18.Ramp
www .github .com/kvh/ramp
Ramp是一個在Python語言下制定機器學習中加快原型設計的解決方案的庫程序。他是一個輕型的pandas-based機器學習中可插入的框架,它現存的Python語言下的機器學習和統計工具(比如scikit-learn,rpy2等)Ramp提供了一個簡單的聲明性語法探索功能從而能夠快速有效地實施演算法和轉換。
19.Feature Forge
www .github .com/machinalis/featureforge
這一系列工具通過與scikit-learn兼容的API,來創建和測試機器學習功能。
這個庫程序提供了一組工具,它會讓你在許多機器學習程序使用中很受用。當你使用scikit-learn這個工具時,你會感覺到受到了很大的幫助。(雖然這只能在你有不同的演算法時起作用。)20.REP
www .github .com/yandex/rep
REP是以一種和諧、可再生的方式為指揮數據移動驅動所提供的一種環境。
它有一個統一的分類器包裝來提供各種各樣的操作,例如TMVA, Sklearn, XGBoost, uBoost等等。並且它可以在一個群體以平行的方式訓練分類器。同時它也提供了一個互動式的情節。
21.Python 學習機器樣品
www .github .com/awslabs/machine-learning-samples用亞馬遜的機器學習建造的簡單軟體收集。
22.Python-ELM
www .github .com/dclambert/Python-ELM
這是一個在Python語言下基於scikit-learn的極端學習機器的實現。
23.gensim
主題模型python實現
Scalable statistical semantics
Analyze plain-text documents for semantic structureRetrieve semantically similar documents
D. python開發管理系統
我自己開發了一個程序管理系統,鏈接如下:
v1.01:
鏈接:
提取碼:fd4m
v1.02:
鏈接:
提取碼:dlsc
E. 最常用Python開源框架有哪些
django
flask等等
建議先把django學會,慢慢來,舉一反三。前期比較困難。
F. 收藏!3個最佳學習Python編程的開源庫
1、learn-python3
這個存儲庫一共有19本Jupyter筆記本。它涵蓋了字元串和條件之類的基礎知識,然後討論了面向對象編程,以及如何處理異常和一些Python標准庫的特性等。每一個主題都有一個“notebook”鏈接,它會向你介紹該主題和一些示例代碼,當你完成這些內容之後,還有一個練習鏈接,點擊後你就可以做一些測試題。
項目地址:https://github.com/jerry-git/learn-python3
2、learn-python
這個存儲庫還可以作為Python的介紹,幫助你從初級水平上升至中級,這里的中級指的是熟練地使用這種編程語言,而不僅僅是簡單的循環和演算法。該存儲庫是一個Python腳本集合,每個腳本都是一個核心類別的子主題,比如“操作符”、“數據類型”和“控制流”。
你不必完整地學習該課程,正如作者指出的那樣,你還可以將存儲庫用作備忘單,在需要的時候,快速查找,查看文檔,查看代碼,然後運行測試,看代碼是否能正常運行,是否按照代碼准則編寫。
項目地址:https://github.com/trekhleb/learn-python/blob/master/src/control_flow/test_if.py
3、full-speed-python
該存儲庫快速介紹了字元串和列表等基礎知識,然後快速深入到更高級的主題,“類”和“非同步編程”等,作者在寫這本書時採用了一種實用的方法,用代碼示例簡要介紹了每個主題,然後直接跳到練習問題,讓讀者可以自己嘗試。你可以在項目詳情頁下載pdf/epub文件。
項目地址:https://github.com/joaoventura/full-speed-python
關於3個最佳學習Python編程的開源庫,青藤小編就和您分享到這里了。如果您對python編程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於python編程的技巧及素材等內容,可以點擊本站的其他文章進行學習。