1. 如何用python爬取搜索引擎的結果
我選取的是爬取網路知道的html 作為我的搜索源數據,目前先打算做網頁標題的搜索,選用了 Python 的 scrapy 庫來對網頁進行爬取,爬取網頁的標題,url,以及html,用sqlist3來對爬取的數據源進行管理。
爬取的過程是一個深度優先的過程,設定四個起始 url ,然後維護一個資料庫,資料庫中有兩個表,一個 infoLib,其中存儲了爬取的主要信息:標題,url ,html;另一個表為urlLib,存儲已經爬取的url,是一個輔助表,在我們爬取每個網頁前,需要先判斷該網頁是否已爬過(是否存在urlLib中)。在數據存儲的過程中,使用了SQL的少量語法,由於我之前學過 MySQL ,這塊處理起來比較駕輕就熟。
深度優先的網頁爬取方案是:給定初始 url,爬取這個網頁中所有 url,繼續對網頁中的 url 遞歸爬取。代碼逐段解析在下面,方便自己以後回顧。
1.建一個 scrapy 工程:
關於建工程,可以參看這個scrapy入門教程,通過運行:
[python] view plain
scrapy startproject ***
在當前目錄下建一個scrapy 的項目,然後在 spiders 的子目錄下建立一個 .py文件,該文件即是爬蟲的主要文件,注意:其中該文件的名字不能與該工程的名字相同,否則,之後調用跑這個爬蟲的時候將會出現錯誤,見ImportError。
2.具體寫.py文件:
[python] view plain
import scrapy
from scrapy import Request
import sqlite3
class rsSpider(scrapy.spiders.Spider): #該類繼承自 scrapy 中的 spider
name = "" #將該爬蟲命名為 「知道」,在執行爬蟲時對應指令將為: scrapy crawl
#download_delay = 1 #只是用於控制爬蟲速度的,1s/次,可以用來對付反爬蟲
allowed_domains = ["..com"] #允許爬取的作用域
url_first = 'http://..com/question/' #用於之後解析域名用的短字元串
start_urls = ["http://..com/question/647795152324593805.html", #python
"http://..com/question/23976256.html", #database
"http://..com/question/336615223.html", #C++
"http://..com/question/251232779.html", #operator system
"http://..com/question/137965104.html" #Unix programing
] #定義初始的 url ,有五類知道起始網頁
#add database
connDataBase = sqlite3.connect(".db") #連接到資料庫「.db」
cDataBase = connDataBase.cursor() #設置定位指針
cDataBase.execute('''''CREATE TABLE IF NOT EXISTS infoLib
(id INTEGER PRIMARY KEY AUTOINCREMENT,name text,url text,html text)''')
#通過定位指針操作資料庫,若.db中 infoLib表不存在,則建立該表,其中主鍵是自增的 id(用於引擎的docId),下一列是文章的標題,然後是url,最後是html
#url dataBase
cDataBase.execute('''''CREATE TABLE IF NOT EXISTS urlLib
(url text PRIMARY KEY)''')
#通過定位指針操作資料庫,若.db中urlLib表不存在,則建立該表,其中只存了 url,保存已經爬過的url,之所以再建一個表,是猜測表的主鍵應該使用哈希表存儲的,查詢速度較快,此處其實也可以用一個外鍵將兩個表關聯起來
2. .py文件中的parse函數:
.py文件中的parse函數將具體處理url返回的 response,進行解析,具體代碼中說明:
[python] view plain
def parse(self,response):
pageName = response.xpath('//title/text()').extract()[0] #解析爬取網頁中的名稱
pageUrl = response.xpath("//head/link").re('href="(.*?)"')[0] #解析爬取網頁的 url,並不是直接使用函數獲取,那樣會夾雜亂碼
pageHtml = response.xpath("//html").extract()[0] #獲取網頁html
# judge whether pageUrl in cUrl
if pageUrl in self.start_urls:
#若當前url 是 start_url 中以一員。進行該判斷的原因是,我們對重復的 start_url 中的網址將仍然進行爬取,而對非 start_url 中的曾經爬過的網頁將不再爬取
self.cDataBase.execute('SELECT * FROM urlLib WHERE url = (?)',(pageUrl,))
lines = self.cDataBase.fetchall()
if len(lines): #若當前Url已經爬過
pass #則不再在資料庫中添加信息,只是由其為跟繼續往下爬
else: #否則,將信息爬入資料庫
self.cDataBase.execute('INSERT INTO urlLib (url) VALUES (?)',(pageUrl,))
self.cDataBase.execute("INSERT INTO infoLib (name,url,html) VALUES (?,?,?)",(pageName,pageUrl,pageHtml))
else: #此時進入的非 url 網頁一定是沒有爬取過的(因為深入start_url之後的網頁都會先進行判斷,在爬取,在下面的for循環中判斷)
self.cDataBase.execute('INSERT INTO urlLib (url) VALUES (?)',(pageUrl,))
self.cDataBase.execute("INSERT INTO infoLib (name,url,html) VALUES (?,?,?)",(pageName,pageUrl,pageHtml))
self.connDataBase.commit() #保存資料庫的更新
print "-----------------------------------------------" #輸出提示信息,沒啥用
for sel in response.xpath('//ul/li/a').re('href="(/question/.*?.html)'): #抓出所有該網頁的延伸網頁,進行判斷並對未爬過的網頁進行爬取
sel = "http://..com" + sel #解析出延伸網頁的url
self.cDataBase.execute('SELECT * FROM urlLib WHERE url = (?)',(sel,)) #判斷該網頁是否已在資料庫中
lines = self.cDataBase.fetchall()
if len(lines) == 0: #若不在,則對其繼續進行爬取
yield Request(url = sel, callback=self.parse)
2. 請教關於用Python腳本實現ldapsearch 查詢
需要使用模塊ldap,示例代碼
importldap
l=ldap.initialize('ldap://ldapserver')
username="uid=%s,ou=People,dc=mydotcom,dc=com"%username
password="mypassword"
try:
l.protocol_version=ldap.VERSION3
l.simple_bind_s(username,password)
valid=True
exceptException,error:
3. python進行資料庫查詢時怎麼把結果提取出來
設置索引欄位。在開始提取數據前,先將member_id列設置為索引欄位。然後開始提取數據。
按行提取信息。第一步是按行提取數據,例如提取某個用戶的信息。
按列提取信息。嫌閉罩第二步是按列提取數據,例如提取用戶工作年限列的所有信息。
按行與列提取信息。第三步是按行和列提取信息,把前面兩部的查詢條件放在一起,查詢特定用戶的特定信息。
在前面的基礎上繼續增加條件,增加一行同時查詢兩個特定用戶的貸款金額信息。
在前面的代碼後增加sum函數,對結果進行求和。
除了增加行的查詢條件以外,還可以增加列的查詢條件。
多個列的查詢也可以進行求和計算,在前面的代碼後增加sum函數,對這個用戶的貸態橡款金額和年收入兩個欄位求和,並顯示出結果。
提取特定日期的信息。芹鬧數據提取中還有一種很常見的需求就是按日期維度對數據進行匯總和提取,如按月,季度的匯總數據提取和按特定時間段的數據提取等等。
設置索引欄位。首先將索引欄位改為數據表中的日期欄位,這里將issue_d設置為數據表的索引欄位。按日期進行查詢和數據提取。