㈠ 請問怎麼學習python
這是Python的入門階段,也是幫助零基礎學員打好基礎的重要階段。你需要掌握Python基本語法規則及變數、邏輯控制、內置數據結構、文件操作、高級函數、模塊、常用標准庫模板、函數、異常處理、mysql使用、協程等知識點。
學習目標:掌握Python的基本語法,具備基礎的編程能力;掌握Linux基本操作命令,掌握MySQL進階內容,完成銀行自動提款機系統實戰、英漢詞典、歌詞解析器等項目。
這一部分主要學習web前端相關技術,你需要掌握html、cssJavaScript、JQuery、Bootstrap、web開發基礎、Vue、FIask Views、FIask模板、資料庫操作、FIask配置等知識。
學習目標:掌握web前端技術內容,掌握web後端框架,熟練使用FIask、Tornado、Django,可以完成數據監控後台的項目。
這部分主要是學習爬蟲相關的知識點,你需要掌握數據抓取、數據提取、數據存儲、爬蟲並發、動態網頁抓取、scrapy框架、分布式爬蟲、爬蟲攻防、數據結構、演算法等知識。
學習目標:可以掌握爬蟲、數據採集,數據機構與演算法進階和人工智慧技術。可以完成爬蟲攻防、圖片馬賽克、電影推薦系統、地震預測、人工智慧項目等階段項目。
這是Python高級知識點,你需要學習項目開發流程、部署、高並發、性能調優、Go語言基礎、區塊鏈入門等內容。
學習目標:可以掌握自動化運維與區塊鏈開發技術,可以完成自動化運維項目、區塊鏈等項目。
按照上面的Python學習路線圖學習完後,你基本上就可以成為一名合格的Python開發工程師。當然,想要快速成為企業競聘的精英人才,你需要有好的老師指導,還要有較多的項目積累實戰經驗。
㈡ 怎麼用最短時間高效而踏實地學習Python
分三個階段學習。
第一階段:掌握Python的語法和一些常用庫的使用。這里首先推薦廖雪鋒在網上的書籍,這是Python2.7版本的,這本書適合於重頭開始一直讀完,作為一個開發人員,除了基本的語法,這本書裡面提到了一些其他的常用的庫,看了廖老師寫的很多東西,感覺他的思路,以及寫博客寫書的高度,概括性,原理性都十分好,這本書讀完之後,相信就可以動手寫很多東西了,可以盡情的玩轉Python解釋器了。另外還有一本書《Python參考手冊》,這本書也十分的有用,關於Python的方方面面基本都囊括在內,可以作為一本Python字典來查詢使用方法,十分好用。掌握一門語言最好的方法就是用它,所以我覺得邊學語法邊刷Leetcode是掌握Python最快的方式之一。
第二個階段:中級,掌握自己特定領域的庫,掌握pythonic寫法,非常熟悉Python的特性。推薦的第一本書是《編寫高質量代碼--改善python程序的91個建議》,這本書大概的提了下Python工程的文件布局,更多的總結了如何寫出pythonic的代碼,另外,也介紹了一些常用的庫。要想深入的了解Python,有的時候看看Python的源碼也是很重要的,自己通過讀懂源碼,來徹底的了解Python的核心機制,這里推薦《Python源碼剖析——深度探索動態語言核心技術》,這本書並沒有看完,只是在需要深入了解Python某個功能或者數據結構的時候看看相關章節,也覺得受益匪淺。
自己領域的書籍和資料也肯定很多,比如web開發的構架都有很多,只有了解熟悉了所有構架,在選擇的時候才能衡量利弊,然後深入掌握某些構架。
第三個階段:高級,從整個工程項目著眼,考慮document,distribution,性能優化等目前只看了一本書《the hacker guide to python》,看的是英文版的,這本書對項目的布局,文檔,性能,發布等做了很多詳細的介紹,我覺得寫的還是很不錯,只不過本人還需要再讀幾遍。對於大多數人來說,很難有機會從頭開始一個有意義的大型工程項目,所以自己可以用Python實現一些簡單的功能,簡單的項目,這個靈感可以去知乎或者quora搜索,很多前輩都分享了自己的經驗。
㈢ python怎麼學習
Python是一中面向對象的編程語言,語法簡潔而清晰,具有豐富和強大的類庫。對於初學編程者來說,首選Python是個非常棒的選擇。
㈣ 新手怎麼學習python
很多老司機都推薦新人找一本書來看,當然,如果你有充足的時間,那麼就找一本淺顯易懂的書,從頭到尾看下去,同時把所有的例子都動手跑一邊。但你覺得自己的時間並不多,想快速掌握這門語言,那麼我極力推薦廖雪峰的Python 教程。因為我確實是從這個教程裡面學到了很多,不懂得地方再查資料去補充。
找一個實際的項目去練手。我當時是因為要寫一個爬蟲項目,爬取 Instagram 的圖片,如果選擇用 Java 的話就太笨重了。因此不得以我就選擇了學習 Python。在這種條件下的效果比你平時學一門語言的效果要好很多。所以,最好的狀態就是去做一個實際的項目。比如去搭建一個自己的博客網站。
找到一個已經會 Python 的司機。讓他給你指出一條路子,同時在遇到卡殼的地方就找他指點。這樣將會事半功倍,當然別人的時間也是有限的,所以當你遇到問題的時候,第一步應該是去搜索查找問題。
切勿浮躁,自信是成功的開始,雖然你已經看了很長時間的資料,但還是不能把程序跑起來。但相信我,幾乎所有程序員一開始都是這樣的狀態,也都是一步步折騰過來的。
選擇合適的教程。有些書籍是很經典,但未必就適合你。
多動手。不要只顧著看教程,一定要親自動手讓這些程序在自己電腦跑起來。
額外的知識,如英語、計算機基礎知識
要學會看別人代碼。這里推薦多使用 Github。之前我也整理過一系列的 Github 教程。Github系列教程一 「開門」Github系列教程二 「加入Github」Github系列教程三 「上手Git」
學會查看官方文檔
㈤ 如何快速學習Python
一、Python是一種計算機程序設計語言。
你可能已經聽說過很多種流行的編程語言,比如非常難學的C語言,非常流行的Java語言,適合初學者的Basic語言,適合網頁編程的JavaScript語言等等。
二、那Python是一種什麼語言?
首先,我們普及一下編程語言的基礎知識。用任何編程語言來開發程序,都是為了讓計算機幹活,比如下載一個MP3,編寫一個文檔等等,而計算機幹活的CPU只認識機器指令,所以,盡管不同的編程語言差異極大,最後都得「翻譯」成CPU可以執行的機器指令。而不同的編程語言,編寫的代碼量,差距也很大。
比如,完成同一個任務,C語言要寫1000行代碼,Java只需要寫100行,而Python可能只要20行。
三、所以Python是一種相當高級的語言。
1、你也許會問,代碼少還不好?代碼少的代價是運行速度慢,C程序運行1秒鍾,Java程序可能需要2秒,而Python程序可能就需要10秒。
2、那是不是越低級的程序越難學,越高級的程序越簡單?表面上來說,是的,但是,在非常高的抽象計算中,高級的Python程序設計也是非常難學的,所以,高級程序語言不等於簡單。
3、但是,對於初學者和完成普通任務,Python語言是非常簡單易用的。連Google都在大規模使用Python,你就不用擔心學了會沒用。
4、用Python可以做什麼?可以做日常任務,比如自動備份你的MP3;可以做網站,很多著名的網站包括YouTube就是Python寫的;可以做網路游戲的後台,很多在線游戲的後台都是Python開發的。總之就是能幹很多很多事啦。
5、Python當然也有不能乾的事情,比如寫操作系統,這個只能用C語言寫;寫手機應用,只能用Swift/Objective-C(針對iPhone)和Java(針對Android);寫3D游戲,最好用C或C++。
四、如果你是小白用戶,滿足以下條件:
會使用電腦,但從來沒寫過程序;
還記得初中數學學的方程式和一點點代數知識;
想從編程小白變成專業的軟體架構師;
每天能抽出半個小時學習,不要再猶豫了,這個教程就是為你准備的!准備好了嗎?
㈥ 使用python在GPU上構建和訓練卷積神經網路
我將對代碼進行補充演練,以構建在數據集上訓練的任何類型的圖像分類器。在這個例子中,我將使用花卉數據集,其中包括102種不同類型的花。需要數據集和代碼都可以私信我。
Pytorch是機器學習和Python上的免費軟體包,非常易於使用。語法模擬numpy,因此,如果你在python中有一些科學計算經驗,那麼會相當有用的。賀寬只需幾行代碼,就可以下載預先訓練的數據集,使用定義的變換對圖像進叢襲行標准化,然後運行訓練。
創建和擴充數據集
為了增加數據集,我使用' google_images_download'API 從互聯網上下載了相關圖像。顯然,您可以使用此API不僅可以擴充現有數據集,還可以從頭開始創建自己的數據集。
確保從圖像中挑選出異常值(損壞的文件或偶然出現的無關圖像)。
圖像標准化
為了使圖像具有相同的大小和像素變化,可以使用pytorch的transfors模塊:
轉移學習
從頭開始訓練的模型可能不是最明智的選擇,因為有許多網路可用於各種數據集。簡單地說,像edge-和其他簡單形狀檢測器等低級特徵對於不同的模型是相似的,即使clasificators是針對不同目的進行訓練的。在本項目中,我使用了一個預訓練網路Resnet152,只有最後一個完全連接的層重新用於新任務,即使這樣也會產生相當好的效果。
在這里,我將除最後一層之外的所有層都設置為具有固定權重(requires_grad = False),因此只有最後層中的參數將通過梯度下降進行更新。
訓練模型
下面介紹一下進行訓練的函數:
如何獲得GPU?
當然,對CPU的訓練太慢了。根據我自己的經驗,在GPU僅需要一個小時就可以完成12次訓練周期,但是在CPU上相同數量的訓練周期可能需要花費大約15個小時。
如果您沒有本地可用的GPU,則可以考慮使用雲GPU。為了加速禪鄭亮CNN的訓練,我使用了floydhub(www.floydhub.com)上提供的雲GPU 。
這項服務非常指的使用:總有很好的文檔和大量的提示,所以你會很清楚的知道下一步需要如何去做。在floydhub上對於使用GPU的收費也是可以接受的。
首先,需要將數據集上傳到伺服器
然後,需要創建項目。需要在計算機上安裝floydhub客戶端,將數據集上載到其網站並在終端中運行以下命令:
其中'username'是您的登錄名,'i'是數據集所在的文件夾。
這樣子在訓練網路時就會很輕鬆了
結果和改進想法
得到的模型在數據集上訓練了1.5小時,並在驗證數據集上達到了95%的准確度。