導航:首頁 > 編程語言 > python30寫爬蟲

python30寫爬蟲

發布時間:2023-07-27 19:30:43

❶ 如何用python寫爬蟲 知乎

學習

基本的爬蟲工作原理
基本的http抓取工具,scrapy
Bloom Filter: Bloom Filters by Example
如果需要大規模網頁抓取,你需要學習分布式爬蟲的概念。其實沒那麼玄乎,你只要學會怎樣維護一個所有集群機器能夠有效分享的分布式隊列就好。最簡單的實現是python-rq: https://github.com/nvie/rq
rq和Scrapy的結合:darkrho/scrapy-redis · GitHub
後續處理,網頁析取(grangier/python-goose · GitHub),存儲(Mongodb)

❷ python爬蟲怎麼做

大到各類搜索引擎,小到日常數據採集,都離不開網路爬蟲。爬蟲的基本原理很簡單,遍歷網路中網頁,抓取感興趣的數據內容。這篇文章會從零開始介紹如何編寫一個網路爬蟲抓取數據做告宏,然後會一步步逐漸完善爬蟲的抓取功能。

工具安裝

我們需要安裝python,python的requests和BeautifulSoup庫。我們用Requests庫用抓取網頁的內容,使用BeautifulSoup庫來從網頁中提取數據。

安裝python

運行pipinstallrequests

運行pipinstallBeautifulSoup

抓取網頁

完成必要工具安裝後,我們正式開始編寫我們的爬蟲。我們的第一個任務是要抓取所有豆瓣上的圖書信息。我們以/subject/26986954/為例,首先看看開如何抓取網頁的內容。

使用python的requests提供的get()方法我們可以非常簡單的獲取的指定網頁的內純冊容,代碼如下:

提取內容

抓取到網頁的內容後,我們要做的就是提取出我們想要的內容。在我們的第一個例子中,我們只需要提取書名。首先我們導入BeautifulSoup庫,使用BeautifulSoup我們可以非常簡單的提取網頁的特定內容。

連續抓取網頁

到目前為止,我們已經可以抓取單個網頁的內容了,現在讓我們看看如何抓取整個網站的內容。我們知道網頁之間是通過超鏈接互相連接在一起的,通過鏈接我們可以訪問整個網路。所以我們可以從每個頁面提取出包含指向其它網頁的鏈接,然後重復的對新鏈接進行抓取。

通過以上幾步我們就可以寫出一個最原始的爬蟲。在理解了爬蟲原理的基礎上,我們可以進一步對爬蟲進行完善。

寫過一個系列關於爬蟲的文章:/i6567289381185389064/。感興趣的可以前往查看。

Python基本環境的搭建,爬蟲的基本原理以及爬蟲的原型

Python爬蟲入門(第1部分)

如何使用BeautifulSoup對網頁內容進行提取

Python爬蟲入門(第2部分)

爬蟲運行時數據的存儲數據,以SQLite和MySQL作為示例

Python爬蟲入門(第3部分)

使用seleniumwebdriver對動態網頁進行抓取

Python爬蟲入門(第4部分)

討論了如何處理網站的反爬蟲策略

Python爬友如蟲入門(第5部分)

對Python的Scrapy爬蟲框架做了介紹,並簡單的演示了如何在Scrapy下進行開發

Python爬蟲入門(第6部分)

❸ Python爬蟲如何寫

Python的爬蟲庫其實很多,像常見的urllib,requests,bs4,lxml等,初始入門爬蟲的話,可以學習一下requests和bs4(BeautifulSoup)這2個庫,比較簡單,也易學習,requests用於請求頁面,BeautifulSoup用於解析頁面,下面我以這2個庫為基礎,簡單介紹一下Python如何爬取網頁靜態數據和網頁動態數據,實驗環境win10+python3.6+pycharm5.0,主要內容如下:

Python爬取網頁靜態數據

這個就很簡單,直接根據網址請求頁面就行,這里以爬取糗事網路上的內容為例:

1.這里假設我們要爬取的文本內容如下,主要包括昵稱、內容、好笑數和評論數這4個欄位:

打開網頁源碼,對應網頁結構如下,很簡單,所有欄位內容都可以直接找到:

2.針對以上網頁結構,我們就可以編寫相關代碼來爬取網頁數據了,很簡單,先根據url地址,利用requests請求頁面,然後再利用BeautifulSoup解析數據(根據標簽和屬性定位)就行,如下:

程序運行截圖如下,已經成功爬取到數據:

Python爬取網頁動態數據

很多種情況下,網頁數據都是動態載入的,直接爬取網頁是提取不到任何數據的,這時就需要抓包分析,找到動態載入的數據,一般情況下就是一個json文件(當然,也敬鏈譽可能是其他類型的文件,像xml等),然後請求解析這個json文件,就能獲取到我們需要的數據,這里以爬取人人貸上面的散標數據為例:

1.這里假設我們爬取的數據如下,主要包括年亮段利率,借款標題,期限,金額,進度這5個欄位:

2.按F12調出開發者工具,依次點擊「Network」->「XHR」,F5刷新頁面,就可以找到動態載入的json文件,具體信息如下:

3.接著,針對以上抓包分析,我們就可以編寫相關代碼來爬取數據了,基本思路和上面的靜態網頁差不多,先利用requests請求json,然後再利用python自帶的json包解析數據就行,如下:

程序運行截圖如下,已經成功獲取到數據:

至此,我們就完成了利用python來爬取網頁數據。總的來說,整個過程很簡單,requests和BeautifulSoup對於初學者來說,非常容易學習,也易掌握,可以學習使用一下,後期熟悉後,可以學習一下scrapy爬蟲框架,可以明顯提高開發效率,非常不錯,當然,網頁中要是有加密、驗證碼等,這個就需要自己好好琢磨,研究對策了,網上也有相關教程和資料,感興趣的話,可以搜一下,希望以上分喚陸享的內容能對你上有所幫助吧,也歡迎大家評論、留言。

❹ python編寫爬蟲小程序的方法


我們可以通過python 來實現這樣一個簡單的爬蟲功能,把我們想要的代碼爬取到本地。下面就迅判看
看如何使用python來實現這樣一個功能。
起因
深夜忽然想下載一點電子書來擴充一下kindle,就想起來python學得太淺,什麼「裝飾器」啊、「多線程」啊都沒有學到。
想到廖雪峰大神的python教程很經典、很著名。就想找找有木有pdf版的下載差判,結果居然沒找到!!CSDN有個不完整的還騙走了我一個積分!!尼瑪!!
怒了,准備寫個程序直接去爬廖雪峰的教程,然後再html轉成電子書。
過程
過程很有趣呢,用淺薄的python知識,寫python程序,去爬python教程,來學習python。想想有點小激動
果然python很是方便,50行左右就OK了。直接貼代碼:
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# coding:utf-8
import urllib
domain =
#廖雪峰的域名
path = rC:Userscyhhao2013Desktoptemp #html要保存的路徑
# 一個html的頭文件
input = open(rC:Userscyhhao2013Desktop.html, r)
head = input.read()
# 打開python教程主界面
f = urllib.urlopen(/wiki/)
home = f.read()
f.close()
# 替換所有空格回車(這樣容易好獲取url)
geturl = home.replace(n, )
geturl = geturl.replace( , )
# 得到包含url的字元串
list = geturl.split(rem;ahref=)[1:]
# 強迫畝慶改症犯了,一定要把第一個頁面也加進去才完美
list.insert(0, /wiki/)
# 開始遍歷url List
for li in list:
url = li.split(r)[0]
url = domain + url #拼湊url
print url
f = urllib.urlopen(url)
html = f.read()
# 獲得title為了寫文件名
title = html.split(title)[1]
title = title.split( - 廖雪峰的官方網站/title)[0]
# 要轉一下碼,不然加到路徑里就悲劇了
title = title.decode(utf-8).replace(/,)
# 截取正文
html = html.split(r!-- block main --)[1]
html = html.split(rh4您的支持是作者寫作最大的動力!/h4)[0]
html = html.replace(rsrc=, src= + domain)
# 加上頭和尾組成完整的html
html = head + html+/body/html
# 輸出文件
output = open(path + %d % list.index(li) + title + .html, w)
output.write(html)
output.close()
簡直,人生苦短我用python啊!
以上所述就是本文的全部內容了,希望大家能夠喜歡。

❺ 如何用Python做爬蟲

1)首先你要明白爬蟲怎樣工作。

想像你是一隻蜘蛛,現在你被放到了互聯「網」上。那麼,你需要把所有的網頁都看一遍。怎麼辦呢?沒問題呀,你就隨便從某個地方開始,比如說人民日報的首頁,這個叫initial pages,用$表示吧。

在人民日報的首頁,你看到那個頁面引向的各種鏈接。於是你很開心地從爬到了「國內新聞」那個頁面。太好了,這樣你就已經爬完了倆頁面(首頁和國內新聞)!暫且不用管爬下來的頁面怎麼處理的,你就想像你把這個頁面完完整整抄成了個html放到了你身上。

突然你發現, 在國內新聞這個頁面上,有一個鏈接鏈回「首頁」。作為一隻聰明的蜘蛛,你肯定知道你不用爬回去的吧,因為你已經看過了啊。所以,你需要用你的腦子,存下你已經看過的頁面地址。這樣,每次看到一個可能需要爬的新鏈接,你就先查查你腦子里是不是已經去過這個頁面地址。如果去過,那就別去了。

好的,理論上如果所有的頁面可以從initial page達到的話,那麼可以證明你一定可以爬完所有的網頁。

那麼在python里怎麼實現呢?
很簡單

import Queue

initial_page = "初始化頁"

url_queue = Queue.Queue()
seen = set()

seen.insert(initial_page)
url_queue.put(initial_page)

while(True): #一直進行直到海枯石爛
if url_queue.size()>0:
current_url = url_queue.get() #拿出隊例中第一個的url
store(current_url) #把這個url代表的網頁存儲好
for next_url in extract_urls(current_url): #提取把這個url里鏈向的url
if next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break

寫得已經很偽代碼了。

所有的爬蟲的backbone都在這里,下面分析一下為什麼爬蟲事實上是個非常復雜的東西——搜索引擎公司通常有一整個團隊來維護和開發。

2)效率
如果你直接加工一下上面的代碼直接運行的話,你需要一整年才能爬下整個豆瓣的內容。更別說Google這樣的搜索引擎需要爬下全網的內容了。

問題出在哪呢?需要爬的網頁實在太多太多了,而上面的代碼太慢太慢了。設想全網有N個網站,那麼分析一下判重的復雜度就是N*log(N),因為所有網頁要遍歷一次,而每次判重用set的話需要log(N)的復雜度。OK,OK,我知道python的set實現是hash——不過這樣還是太慢了,至少內存使用效率不高。

通常的判重做法是怎樣呢?Bloom Filter. 簡單講它仍然是一種hash的方法,但是它的特點是,它可以使用固定的內存(不隨url的數量而增長)以O(1)的效率判定url是否已經在set中。可惜天下沒有白吃的午餐,它的唯一問題在於,如果這個url不在set中,BF可以100%確定這個url沒有看過。但是如果這個url在set中,它會告訴你:這個url應該已經出現過,不過我有2%的不確定性。注意這里的不確定性在你分配的內存足夠大的時候,可以變得很小很少。一個簡單的教程:Bloom Filters by Example

注意到這個特點,url如果被看過,那麼可能以小概率重復看一看(沒關系,多看看不會累死)。但是如果沒被看過,一定會被看一下(這個很重要,不然我們就要漏掉一些網頁了!)。 [IMPORTANT: 此段有問題,請暫時略過]

好,現在已經接近處理判重最快的方法了。另外一個瓶頸——你只有一台機器。不管你的帶寬有多大,只要你的機器下載網頁的速度是瓶頸的話,那麼你只有加快這個速度。用一台機子不夠的話——用很多台吧!當然,我們假設每台機子都已經進了最大的效率——使用多線程(python的話,多進程吧)。

3)集群化抓取
爬取豆瓣的時候,我總共用了100多台機器晝夜不停地運行了一個月。想像如果只用一台機子你就得運行100個月了...

那麼,假設你現在有100台機器可以用,怎麼用python實現一個分布式的爬取演算法呢?

我們把這100台中的99台運算能力較小的機器叫作slave,另外一台較大的機器叫作master,那麼回顧上面代碼中的url_queue,如果我們能把這個queue放到這台master機器上,所有的slave都可以通過網路跟master聯通,每當一個slave完成下載一個網頁,就向master請求一個新的網頁來抓取。而每次slave新抓到一個網頁,就把這個網頁上所有的鏈接送到master的queue里去。同樣,bloom filter也放到master上,但是現在master只發送確定沒有被訪問過的url給slave。Bloom Filter放到master的內存里,而被訪問過的url放到運行在master上的Redis里,這樣保證所有操作都是O(1)。(至少平攤是O(1),Redis的訪問效率見:LINSERT – Redis)

考慮如何用python實現:
在各台slave上裝好scrapy,那麼各台機子就變成了一台有抓取能力的slave,在master上裝好Redis和rq用作分布式隊列。

代碼於是寫成

#slave.py

current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)

store(current_url);
send_to_master(to_send)

#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()

initial_pages = "www.renmingribao.com"

while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)

好的,其實你能想到,有人已經給你寫好了你需要的:darkrho/scrapy-redis · GitHub

4)展望及後處理
雖然上面用很多「簡單」,但是真正要實現一個商業規模可用的爬蟲並不是一件容易的事。上面的代碼用來爬一個整體的網站幾乎沒有太大的問題。

但是如果附加上你需要這些後續處理,比如

有效地存儲(資料庫應該怎樣安排)

有效地判重(這里指網頁判重,咱可不想把人民日報和抄襲它的大民日報都爬一遍)

有效地信息抽取(比如怎麼樣抽取出網頁上所有的地址抽取出來,「朝陽區奮進路中華道」),搜索引擎通常不需要存儲所有的信息,比如圖片我存來幹嘛...

及時更新(預測這個網頁多久會更新一次)

如你所想,這里每一個點都可以供很多研究者十數年的研究。雖然如此,
「路漫漫其修遠兮,吾將上下而求索」。

所以,不要問怎麼入門,直接上路就好了:)

❻ 如何用Python做爬蟲

在我們日常上網瀏覽網頁的時候,經常會看到一些好看的圖片,我們就希望把這些圖片保存下載,或者用戶用來做桌面壁紙,或者用來做設計的素材。

我們最常規的做法就是通過滑鼠右鍵,選擇另存為。但有些圖片滑鼠右鍵的時候並沒有另存為選項,還有辦法就通過就是通過截圖工具截取下來,但這樣就降低圖片的清晰度。好吧其實你很厲害的,右鍵查看頁面源代碼。

我們可以通過python來實現這樣一個簡單的爬蟲功能,把我們想要的代碼爬取到本地。下面就看看如何使用python來實現這樣一個功能。

❼ 教你用Python寫一個爬蟲,免費看小說

這是一個練習作品。用python腳本爬取筆趣閣上面的免費小說。

環境:python3
類庫:BeautifulSoup
數據源: http://www.biqukan.cc

原理就是偽裝正常http請求,正常訪問網頁。然後通過bs4重新解析html結構來提取有效數據。

包含了偽裝請求頭部,數據源配置(如果不考慮擴展其他數據源,可以寫死彎螞)。纖鬧伏

config.py文件

fiction.py文件

summary.py文件

catalog.py文件

article.py文件

暫沒有做數據保存模塊。如果需要串起來做成一個完整的項目的話,只需要把小說數據結構保存即可(節省磁碟空間)。通過小說url可以很快速的提取出小說簡介、目錄、每一章的毀攜正文。

如果想要做的更好,可以把目錄,介紹、正文等部分緩存起來,當然得有足夠的空間。

❽ python爬蟲怎麼做

閱讀全文

與python30寫爬蟲相關的資料

熱點內容
gps測量加密法 瀏覽:958
量價絕殺pdf 瀏覽:480
循環壓縮機振動高的原因 瀏覽:396
教育機構網站源碼 瀏覽:541
程序員租客被騙 瀏覽:397
安卓機用了三年會怎麼樣 瀏覽:294
圖片怎麼轉pdf加密 瀏覽:448
解壓縮軟體免安裝版 瀏覽:962
安卓簡訊如何存檔 瀏覽:143
汽車導航不讀文件夾 瀏覽:107
全球雲伺服器如何注冊 瀏覽:884
udp直播流如何在伺服器里播放器 瀏覽:591
macbrew安裝php 瀏覽:425
點特徵提取演算法 瀏覽:502
python彈窗顯示輸入的文字 瀏覽:751
python數字和中文互轉 瀏覽:639
汽車空調壓縮機外殼 瀏覽:458
大型伺服器都是採用什麼模式 瀏覽:5
伺服器為什麼跳閘 瀏覽:398
怎麼用python分析基金收益 瀏覽:990