經過前面四章的學習,我們已經可以使用Requests庫、Beautiful Soup庫和Re庫,編寫基本的Python爬蟲程序了。那麼這一章就來學習一個專業的網路爬蟲框架--Scrapy。沒錯,是框架,而不是像前面介紹的函數功能庫。
Scrapy是一個快速、功能強大的網路爬蟲框架。
可能大家還不太了解什麼是框架,爬蟲框架其實是實現爬蟲功能的一個軟體結構和功能組件的集合。
簡而言之, Scrapy就是一個爬蟲程序的半成品,可以幫助用戶實現專業的網路爬蟲。
使用Scrapy框架,不需要你編寫大量的代碼,Scrapy已經把大部分工作都做好了,允許你調用幾句代碼便自動生成爬蟲程序,可以節省大量的時間。
當然,框架所生成的代碼基本是一致的,如果遇到一些特定的爬蟲任務時,就不如自己使用Requests庫搭建來的方便了。
PyCharm安裝
測試安裝:
出現框架版本說明安裝成功。
掌握Scrapy爬蟲框架的結構是使用好Scrapy的重中之重!
先上圖:
整個結構可以簡單地概括為: 「5+2」結構和3條數據流
5個主要模塊(及功能):
(1)控制所有模塊之間的數據流。
(2)可以根據條件觸發事件。
(1)根據請求下載網頁。
(1)對所有爬取請求進行調度管理。
(1)解析DOWNLOADER返回的響應--response。
(2)產生爬取項--scraped item。
(3)產生額外的爬取請求--request。
(1)以流水線方式處理SPIDER產生的爬取項。
(2)由一組操作順序組成,類似流水線,每個操作是一個ITEM PIPELINES類型。
(3)清理、檢查和查重爬取項中的HTML數據並將數據存儲到資料庫中。
2個中間鍵:
(1)對Engine、Scheler、Downloader之間進行用戶可配置的控制。
(2)修改、丟棄、新增請求或響應。
(1)對請求和爬取項進行再處理。
(2)修改、丟棄、新增請求或爬取項。
3條數據流:
(1):圖中數字 1-2
1:Engine從Spider處獲得爬取請求--request。
2:Engine將爬取請求轉發給Scheler,用於調度。
(2):圖中數字 3-4-5-6
3:Engine從Scheler處獲得下一個要爬取的請求。
4:Engine將爬取請求通過中間件發送給Downloader。
5:爬取網頁後,Downloader形成響應--response,通過中間件發送給Engine。
6:Engine將收到的響應通過中間件發送給Spider處理。
(3):圖中數字 7-8-9
7:Spider處理響應後產生爬取項--scraped item。
8:Engine將爬取項發送給Item Pipelines。
9:Engine將爬取請求發送給Scheler。
任務處理流程:從Spider的初始爬取請求開始爬取,Engine控制各模塊數據流,不間斷從Scheler處獲得爬取請求,直至請求為空,最後到Item Pipelines存儲數據結束。
作為用戶,只需配置好Scrapy框架的Spider和Item Pipelines,也就是數據流的入口與出口,便可完成一個爬蟲程序的搭建。Scrapy提供了簡單的爬蟲命令語句,幫助用戶一鍵配置剩餘文件,那我們便來看看有哪些好用的命令吧。
Scrapy採用命令行創建和運行爬蟲
PyCharm打開Terminal,啟動Scrapy:
Scrapy基本命令行格式:
具體常用命令如下:
下面用一個例子來學習一下命令的使用:
1.建立一個Scrapy爬蟲工程,在已啟動的Scrapy中繼續輸入:
執行該命令,系統會在PyCharm的工程文件中自動創建一個工程,命名為pythonDemo。
2.產生一個Scrapy爬蟲,以教育部網站為例http://www.moe.gov.cn:
命令生成了一個名為demo的spider,並在Spiders目錄下生成文件demo.py。
命令僅用於生成demo.py文件,該文件也可以手動生成。
觀察一下demo.py文件:
3.配置產生的spider爬蟲,也就是demo.py文件:
4.運行爬蟲,爬取網頁:
如果爬取成功,會發現在pythonDemo下多了一個t20210816_551472.html的文件,我們所爬取的網頁內容都已經寫入該文件了。
以上就是Scrapy框架的簡單使用了。
Request對象表示一個HTTP請求,由Spider生成,由Downloader執行。
Response對象表示一個HTTP響應,由Downloader生成,有Spider處理。
Item對象表示一個從HTML頁面中提取的信息內容,由Spider生成,由Item Pipelines處理。Item類似於字典類型,可以按照字典類型來操作。
2. 如何通過網路爬蟲獲取網站數據
這里以python為例,簡單介紹一下如何通過python網路爬蟲獲取網站數據,主要分為靜態網頁數據的爬埋山差取和動態網頁數據的爬取,實驗環境win10+python3.6+pycharm5.0,主要內容如下:
靜態網頁數據
這里的數據都嵌套在網頁源碼中,所以直接requests網頁源碼進行解析就行,下面我簡單介紹一下,這里以爬取糗事網路上的數據為例:
1.首先,打開原網頁,如下,這里假設要爬取的欄位包括昵稱、內容、好笑數和評論數:
接著查看網頁源碼,如下,可以看的出來,所有的數據都嵌套在網頁中:
2.然後針對以上網頁結構,我們就可以直接編寫爬蟲代碼,解析網頁並提取出我們需要的數據了,測試代碼如下,非常簡單,主要用到requests+BeautifulSoup組合,其中requests用於獲取網頁源碼,BeautifulSoup用於解析網頁提取數據:
點擊運行這個程序,效果如下,已經成功爬取了到我們需要的數據:
動態網頁數據
這里的數據都沒有在網頁源碼中(所以直接請求頁面是獲取不到任何數據的),大部分情況下都是存儲在一唯唯個json文件中,只有在網頁更新的時候,才會載入數據,下面我簡單介紹一下這種方式,這里以爬取人人貸上面的數據為例:
1.首先,打開原網頁,如下,這里假設要爬取的數據包括年利率,借款標題,期限,金額和進度:
接著按F12調出開發者工具,依次點擊「Network」->「XHR」,F5刷新頁面,就可以找打動態載入的json文件,如下,也就是我們需要爬彎皮取的數據:
2.然後就是根據這個json文件編寫對應代碼解析出我們需要的欄位信息,測試代碼如下,也非常簡單,主要用到requests+json組合,其中requests用於請求json文件,json用於解析json文件提取數據:
點擊運行這個程序,效果如下,已經成功爬取到我們需要的數據:
至此,我們就完成了利用python網路爬蟲來獲取網站數據。總的來說,整個過程非常簡單,python內置了許多網路爬蟲包和框架(scrapy等),可以快速獲取網站數據,非常適合初學者學習和掌握,只要你有一定的爬蟲基礎,熟悉一下上面的流程和代碼,很快就能掌握的,當然,你也可以使用現成的爬蟲軟體,像八爪魚、後羿等也都可以,網上也有相關教程和資料,非常豐富,感興趣的話,可以搜一下,希望以上分享的內容能對你有所幫助吧,也歡迎大家評論、留言進行補充。
3. python爬蟲怎麼做
大到各類搜索引擎,小到日常數據採集,都離不開網路爬蟲。爬蟲的基本原理很簡單,遍歷網路中網頁,抓取感興趣的數據內容。這篇文章會從零開始介紹如何編寫一個網路爬蟲抓取數據做告宏,然後會一步步逐漸完善爬蟲的抓取功能。
工具安裝
我們需要安裝python,python的requests和BeautifulSoup庫。我們用Requests庫用抓取網頁的內容,使用BeautifulSoup庫來從網頁中提取數據。
安裝python
運行pipinstallrequests
運行pipinstallBeautifulSoup
抓取網頁
完成必要工具安裝後,我們正式開始編寫我們的爬蟲。我們的第一個任務是要抓取所有豆瓣上的圖書信息。我們以/subject/26986954/為例,首先看看開如何抓取網頁的內容。
使用python的requests提供的get()方法我們可以非常簡單的獲取的指定網頁的內純冊容,代碼如下:
提取內容
抓取到網頁的內容後,我們要做的就是提取出我們想要的內容。在我們的第一個例子中,我們只需要提取書名。首先我們導入BeautifulSoup庫,使用BeautifulSoup我們可以非常簡單的提取網頁的特定內容。
連續抓取網頁
到目前為止,我們已經可以抓取單個網頁的內容了,現在讓我們看看如何抓取整個網站的內容。我們知道網頁之間是通過超鏈接互相連接在一起的,通過鏈接我們可以訪問整個網路。所以我們可以從每個頁面提取出包含指向其它網頁的鏈接,然後重復的對新鏈接進行抓取。
通過以上幾步我們就可以寫出一個最原始的爬蟲。在理解了爬蟲原理的基礎上,我們可以進一步對爬蟲進行完善。
寫過一個系列關於爬蟲的文章:/i6567289381185389064/。感興趣的可以前往查看。
Python基本環境的搭建,爬蟲的基本原理以及爬蟲的原型
Python爬蟲入門(第1部分)
如何使用BeautifulSoup對網頁內容進行提取
Python爬蟲入門(第2部分)
爬蟲運行時數據的存儲數據,以SQLite和MySQL作為示例
Python爬蟲入門(第3部分)
使用seleniumwebdriver對動態網頁進行抓取
Python爬蟲入門(第4部分)
討論了如何處理網站的反爬蟲策略
Python爬友如蟲入門(第5部分)
對Python的Scrapy爬蟲框架做了介紹,並簡單的演示了如何在Scrapy下進行開發
Python爬蟲入門(第6部分)
4. python爬蟲學習教程哪個好
第一階段
Python開發基礎和核心特性1.變數及運算符2.分支及循環3.循環及字元串4.列表及嵌套列表5.字典及項目練習6.函數的使用7.遞歸及文件處理8.文件9.面向對象10.設計模式及異常處理11.異常及模塊的使用12.坦克大戰13.核心編程14.高級特性15.內存管理
第二階段
資料庫和linux基礎1.並發編程2.網路通信3.MySQL4.Linux5.正則表達式
第三階段
web前端開發基礎1.html基本標簽2.css樣式3.css浮動和定位4.js基礎5.js對象和函數6.js定時器和DOM7.js事件響應8.使用jquery9.jquery動畫特效10.Ajax非同步網路請求
第四階段
Python Web框架階段1.Django-Git版本控制2.Django-博客項目3.Django-商城項目4.Django模型層5.Django入門6.Django模板層7.Django視圖層8.Tornado框架
第五階段
Python 爬蟲實戰開發1.Python爬蟲基礎2.Python爬蟲Scrapy框架
5. Python 爬蟲的入門教程有哪些值得推薦的
Python 爬蟲的入門教程有很多值得推薦的,以下是一些比較受歡迎和推薦的教程:
1.《精通 Python 網路爬蟲》:這本書是一本入門級的 Python 爬蟲教程,適合初學者學習。
Python3 網路爬蟲實戰:這是一個在線教程,詳細介紹了 Python 爬蟲的基礎知識,包括爬蟲的原理、如何使用 Python 爬取網頁、如何使用正則表達式和 XPath 解析網頁等。
Python 爬蟲指南:這是一個在線教程,通過幾個簡單的例子來介紹 Python 爬蟲的基礎知識。
網路爬蟲實戰:這是一個在線課程,通過幾個實際案例來介紹 Python 爬蟲的基礎知識和進階技巧。
Python 爬蟲實戰:這是一個在線課程,通過幾個實際案例來介紹 Python 爬蟲的基礎知識和進階技巧。
以上是一些比較受歡迎和推薦的 Python 爬蟲入門教程,你可以根據自己的需求和學習進度選擇適合自己的教程。
bilibili上也有一些視頻教程。
6. 如何用Python做爬蟲
在我們日常上網瀏覽網頁的時候,經常會看到一些好看的圖片,我們就希望把這些圖片保存下載,或者用戶用來做桌面壁紙,或者用來做設計的素材。
我們最常規的做法就是通過滑鼠右鍵,選擇另存為。但有些圖片滑鼠右鍵的時候並沒有另存為選項,還有辦法就通過就是通過截圖工具截取下來,但這樣就降低圖片的清晰度。好吧其實你很厲害的,右鍵查看頁面源代碼。
我們可以通過python來實現這樣一個簡單的爬蟲功能,把我們想要的代碼爬取到本地。下面就看看如何使用python來實現這樣一個功能。
7. 如何用Python爬蟲抓取網頁內容
首先,你要安裝requests和BeautifulSoup4,然後執行如下代碼.
importrequests
frombs4importBeautifulSoup
iurl='http://news.sina.com.cn/c/nd/2017-08-03/doc-ifyitapp0128744.shtml'
res=requests.get(iurl)
res.encoding='utf-8'
#print(len(res.text))
soup=BeautifulSoup(res.text,'html.parser')
#標題
H1=soup.select('#artibodyTitle')[0].text
#來源
time_source=soup.select('.time-source')[0].text
#來源
origin=soup.select('#artibodyp')[0].text.strip()
#原標題
oriTitle=soup.select('#artibodyp')[1].text.strip()
#內容
raw_content=soup.select('#artibodyp')[2:19]
content=[]
forparagraphinraw_content:
content.append(paragraph.text.strip())
'@'.join(content)
#責任編輯
ae=soup.select('.article-editor')[0].text
這樣就可以了
8. python網頁爬蟲教程
現行環境下,大數據與人工智慧的重要依託還是龐大的數據和分析採集,類似於神譽淘寶 京東 網路 騰訊級別的企業 能夠通過數據可觀的用戶群體獲取需要的數據,而一般企業可能就沒有這種通過產品獲取數據的能力和條件,想從事這方面的工作,需掌握以下知識:
1. 學習Python基礎知識並實現基本的爬蟲過程
一般獲取數據的過程都是按照 發送請求-獲得頁面反饋-解析並且存儲數據 這三個流程來實現的。這個過程其實就是模擬了一個人工瀏覽網頁的過程。
Python中爬蟲相關的包很多:urllib、requests、bs4、scrapy、pyspider 等,我們可以按照requests 負責連接網謹唯站,返回網頁,Xpath 用於解析網頁,便於抽取數據。
2.了解非結構化數據的存儲
爬蟲抓取的數據結構復雜 傳統的結構化資料庫可能並不是特別適合我們使用。我們前期推薦使用MongoDB 就可以。
3. 掌握一些常用的反爬蟲技巧
使用代理IP池、抓包、驗證碼的OCR處理等處理方式即可以解決大部分網站的反爬蟲策略。
4.了解分布式存儲
分布式這個東西,聽起來很恐怖,但其實就是利用多線程的原理讓多個爬蟲同時工作,需要你掌握 Scrapy + MongoDB + Redis 這三種工具游晌段就可以了。