⑴ python多線程是什麼意思
幾乎所有的操作系統都支持同時運行多個任務,一個任務通常就是一個程序,所有運行中的任務都對應一個進程。即當一個程序進入內存運行時,即變成一個進程。進程就是處於運行過程中的程序,並且具有一定的獨立功能。進程是系統進行資源分配調度的一個獨立單位,當一個程序運行時,內部可能包含多個順序執流,每個順序執行流就是一個線程。
1、線程在程序中是獨立的,並發的執行流,劃分尺度小於進程,所有多線程程序的並發性高;
2、進程在執行過程中擁有獨立的內存單元,而多個線程共享內存,可以極大地提高進程程序的運行效率;
3、線程比進程具有更高的性能,由於同一個進程中的線程都有共性,多個線程共享同一個進程的虛擬空間,可以很容易實現通信。操作系統在創建進程中,必須為該進程分配獨立內存空間,分配大量相關資源,但創建線程則簡單得多。
⑵ python多線程作用
總結起來,使用多線程編程具有如下幾個優點:
進程之間不能共享內存,但線程之間共享內存非常容易。
操作系統在創建進程時,需要為該進程重新分配系統資源,但創建線程的代價則小得多。因此,使用多線程來實現多任務並發執行比使用多進程的效率高。
Python 語言內置了多線程功能支持,而不是單純地作為底層操作系統的調度方式,從而簡化了 Python 的多線程編程。
在實際應用中,多線程是非常有用的。比如一個瀏覽器必須能同時下載多張圖片;一個 Web 伺服器必須能同時響應多個用戶請求;圖形用戶界面(GUI)應用也需要啟動單獨的線程,從主機環境中收集用戶界面事件……總之,多線程在實際編程中的應用是非常廣泛的。
⑶ python怎麼能同時執行代碼(多線程)
import_thread # 引入線程包
# 1. 定義線程
def 線程1名字():
# 在這個地方寫線程1要幹嘛......
def 線程2名字():
# 在這個地方寫線程2要幹嘛......
def 線程3名字():
# 在這個地方寫線程3要幹嘛......
# 以此類推....
# 2. 啟動這些線程
_thread.start_new_thread(線程1名字,())
_thread.start_new_thread(線程2名字,())
_thread.start_new_thread(線程3名字,())
# 以此類推....
# 啟動之後這些線程都是同時執行的
# 如果某個線程函數有參數需要傳入,可使用:
_thread.start_new_thread(某線程名字,(參數1,參數2...) )
⑷ Python 的多線程問題。。
python 的GIL規定每個時刻只能有一個線程訪問python虛擬機,所以你要用python的多線程來做計算是很不合算的,但是對於IO密集型的應用,例如網路交互來說,python的多線程還是非常給力的。
如果你是一個計算密集型的任務,非要用python來並行執行的話,有以下幾個方法:
1 使用python的multiprocessing 模塊,能夠發揮多核的優勢。
2 使用ironPython,但是這個只能在windows下用
3 使用pypy,這個可以實現真正的多線程。
⑸ python之多線程
進程的概念:以一個整體的形式暴露給操作系統管理,裡麵包含各種資源的調用。 對各種資源管理的集合就可以稱為進程。
線程的概念:是操作系統能夠進行運算調度的最小單位。本質上就是一串指令的集合。
進程和線程的區別:
1、線程共享內存空間,進程有獨立的內存空間。
2、線程啟動速度快,進程啟動速度慢。注意:二者的運行速度是無法比較的。
3、線程是執行的指令集,進程是資源的集合
4、兩個子進程之間數據不共享,完全獨立。同一個進程下的線程共享同一份數據。
5、創建新的線程很簡單,創建新的進程需要對他的父進程進行一次克隆。
6、一個線程可以操作(控制)同一進程里的其他線程,但是進程只能操作子進程
7、同一個進程的線程可以直接交流,兩個進程想要通信,必須通過一個中間代理來實現。
8、對於線程的修改,可能會影響到其他線程的行為。但是對於父進程的修改不會影響到子進程。
第一個程序,使用循環來創建線程,但是這個程序中一共有51個線程,我們創建了50個線程,但是還有一個程序本身的線程,是主線程。這51個線程是並行的。注意:這個程序中是主線程啟動了子線程。
相比上個程序,這個程序多了一步計算時間,但是我們觀察結果會發現,程序顯示的執行時間只有0.007秒,這是因為最後一個print函數它存在於主線程,而整個程序主線程和所有子線程是並行的,那麼可想而知,在子線程還沒有執行完畢的時候print函數就已經執行了,總的來說,這個時間只是執行了一個線程也就是主線程所用的時間。
接下來這個程序,吸取了上面這個程序的缺點,創建了一個列表,把所有的線程實例都存進去,然後使用一個for循環依次對線程實例調用join方法,這樣就可以使得主線程等待所創建的所有子線程執行完畢才能往下走。 注意實驗結果:和兩個線程的結果都是兩秒多一點
注意觀察實驗結果,並沒有執行列印task has done,並且程序執行時間極其短。
這是因為在主線程啟動子線程前把子線程設置為守護線程。
只要主線程執行完畢,不管子線程是否執行完畢,就結束。但是會等待非守護線程執行完畢
主線程退出,守護線程全部強制退出。皇帝死了,僕人也跟著殉葬
應用的場景 : socket-server
注意:gil只是為了減低程序開發復雜度。但是在2.幾的版本上,需要加用戶態的鎖(gil的缺陷)而在3點幾的版本上,加鎖不加鎖都一樣。
下面這個程序是一個典型的生產者消費者模型。
生產者消費者模型是經典的在開發架構中使用的模型
運維中的集群就是生產者消費者模型,生活中很多都是
那麼,多線程的使用場景是什麼?
python中的多線程實質上是對上下文的不斷切換,可以說是假的多線程。而我們知道,io操作不佔用cpu,計算佔用cpu,那麼python的多線程適合io操作密集的任務,比如socket-server,那麼cpu密集型的任務,python怎麼處理?python可以折中的利用計算機的多核:啟動八個進程,每個進程有一個線程。這樣就可以利用多進程解決多核問題。
⑹ python的多線程是真的多線程嗎
簡單地說就是作為可能是僅有的支持多線程的解釋型語言(perl的多線程是殘疾,PHP沒有多線程),Python的多線程是有compromise的,在任意時間只有一個Python解釋器在解釋Python bytecode。
UPDATE:如評論指出,Ruby也是有thread支持的,而且至少Ruby MRI是有GIL的。
如果你的代碼是CPU密集型,多個線程的代碼很有可能是線性執行的。所以這種情況下多線程是雞肋,效率可能還不如單線程因為有context switch
但是:如果你的代碼是IO密集型,多線程可以明顯提高效率。例如製作爬蟲(我就不明白為什麼Python總和爬蟲聯系在一起…不過也只想起來這個例子…),絕大多數時間爬蟲是在等待socket返回數據。這個時候C代碼里是有release GIL的,最終結果是某個線程等待IO的時候其他線程可以繼續執行。
反過來講:你就不應該用Python寫CPU密集型的代碼…效率擺在那裡…
如果確實需要在CPU密集型的代碼里用concurrent,就去用multiprocessing庫。這個庫是基於multi process實現了類multi thread的API介面,並且用pickle部分地實現了變數共享。
再加一條,如果你不知道你的代碼到底算CPU密集型還是IO密集型,教你個方法:
multiprocessing這個mole有一個mmy的sub mole,它是基於multithread實現了multiprocessing的API。
假設你使用的是multiprocessing的Pool,是使用多進程實現了concurrency
from multiprocessing import Pool
如果把這個代碼改成下面這樣,就變成多線程實現concurrency
from multiprocessing.mmy import Pool
兩種方式都跑一下,哪個速度快用哪個就行了。
UPDATE:
剛剛才發現concurrent.futures這個東西,包含ThreadPoolExecutor和ProcessPoolExecutor,可能比multiprocessing更簡單