導航:首頁 > 編程語言 > pythonnumpy求眾數

pythonnumpy求眾數

發布時間:2023-08-10 22:34:57

Ⅰ (python)numpy 常用操作

不放回取樣:
從列表ori中不放回地取n個數

通過這種操作,我們可以獲得一個二維列表的子集:
(如果這個二維列表是圖的鄰接矩陣,那麼就是對圖進行隨機采樣,獲得一個圖的子圖)

首先要注意,"+" 操作對於list和numpy.array是完全不同的
python 中的list,"+"代表拼接:

在numpy.array中,"+"代表矩陣相加

keepdim指的是維度不變,常在sum中使用。如:

會發現,keepdim之後還是二維的

這里要注意,pytorch和numpy里max()函數的返回值是不同的
pytorch:

也就是說,max(1)代表求第一維的最大值,對於二維數組來說,就是求縱向的最大值,然後,第一個返回值是最大值所形成數組,第二個返回值是最大值所在的索引。這一個技巧在機器學習的分類任務中很常用,比如我們的分類任務是把數據分成m類,那麼最終我們模型的輸出是m維的,對於n個樣本就是n*m,如果要判斷我們的模型最終的分類結果,就是找n個樣本里,每個樣本m維輸出的最大值索引,代表樣本是這個類的可能性最大。我們可以方便地用這種方式找到最大值地索引:

其中test_out是模型輸出,predict_y則是分類結果
另外一點要注意的是,numpy與pytorch不同,numpy的max()只有一個返回值:

也就是說,numpy.max()不會返回最大值所在的索引

Ⅱ python如何求平均數

import numpy as np
score1=[23,44,67,51]
average=sum(score1)/len(score1)
print('平均數是:{}'.format(average))

Ⅲ python關於numpy基礎問題

Python發展至今,已經有越來越多的人使用python進行科學技術,NumPY是python中的一款高性能科學計算和數據分析的基礎包。
ndarray
ndarray(以下簡稱數組)是numpy的數組對象,需要注意的是,它是同構的,也就是說其中的所有元素必須是相同的類型。其中每個數組都有一個shape和dtype。
shape既是數組的形狀,比如
復制代碼
1 import numpy as np
2 from numpy.random import randn
3
4 arr = randn(12).reshape(3, 4)
5
6 arr
7
8 [[ 0.98655235 1.20830283 -0.72135183 0.40292924]
9 [-0.05059849 -0.02714873 -0.62775486 0.83222997]
10 [-0.84826071 -0.29484606 -0.76984902 0.09025059]]
11
12 arr.shape
13 (3, 4)
復制代碼
其中(3, 4)即代表arr是3行4列的數組,其中dtype為float64
一下函數可以用來創建數組
array將輸入數據轉換為ndarray,類型可制定也可默認
asarray將輸入轉換為ndarray
arange類似內置range
ones、ones_like根據形狀創建一個全1的數組、後者可以復制其他數組的形狀
zeros、zeros_like類似上面,全0
empty、empty_like創建新數組、只分配空間
eye、identity創建對角線為1的對角矩陣
數組的轉置和軸對稱
轉置是多維數組的基本運算之一。可以使用.T屬性或者transpose()來實現。.T就是進行軸對換而transpose則可以接收參數進行更豐富的變換
復制代碼
arr = np.arange(6).reshape((2,3))
print arr
[[0 1 2]
[3 4 5]]
print arr.T
[[0 3]
[1 4]
[2 5]]
arr = np.arange(24).reshape((2,3,4))
print arr
[[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]
print arr.transpose((0,1,2))
[[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]
復制代碼
數組的運算
大小相等的數組之間做任何算術運算都會將運算應用到元素級別。
復制代碼
1 arr = np.arange(9).reshape(3, 3)
2 print arr
3
4 [[0 1 2]
5 [3 4 5]
6 [6 7 8]]
7
8 print arr*arr
9
10 [[ 0 1 4]
11 [ 9 16 25]
12 [36 49 64]]
13
14 print arr+arr
15
16 [[ 0 2 4]
17 [ 6 8 10]
18 [12 14 16]]
19
20 print arr*4
21
22 [[ 0 4 8]
23 [12 16 20]
24 [24 28 32]]
復制代碼
numpy的簡單計算中,ufunc通用函數是對數組中的數據執行元素級運算的函數。
如:
復制代碼
arr = np.arange(6).reshape((2,3))
print arr
[[0 1 2]
[3 4 5]]
print np.square(arr)
[[ 0 1 4]
[ 9 16 25]]
復制代碼
類似的有:abs,fabs,sqrt,square,exp,log,sign,ceil,floor,rint,modf,isnan,isfinite,isinf,cos,cosh,sin,sinh,tan,tanh,
add,subtract,multiply,power,mod,equal,等等

Ⅳ Python-Numpy基礎

如果你已經裝有 Anaconda,那麼你可以使用以下命令通過終端或命令提示符安裝 NumPy:
conda install numpy
如果你沒有 Anaconda,那麼你可以使用以下命令從終端上安裝 NumPy:
pip install numpy
安裝好 NumPy 後,你就可以啟動 Jupyter notebook 開始學習了。接下來從 NumPy 數組開始

就好比一個矩陣

numpy.empty 方法用來創建一個指定形狀(shape)、數據類型(dtype)且未初始化的數組:

參數說明:
參數 描述
shape 數組形狀
dtype 數據類型,可選
order 有"C"和"F"兩個選項,分別代表,行優先和列優先,在計算機內存中的存儲元素的順序。
舉例

輸出結果

創建指定大小的數組,數組元素以 0 來填充:

舉例

結果輸出

創建指定形狀的數組,數組元素以 1 來填充:

舉例

同樣是類型,但是注意這個和上邊的區別,一個是數組的形式,一個是矩陣的形式。

Ⅳ Python基礎 numpy中的常見函數有哪些

有些Python小白對numpy中的常見函數不太了解,今天小編就整理出來分享給大家。

Numpy是Python的一個科學計算的庫,提供了矩陣運算的功能,其一般與Scipy、matplotlib一起使用。其實,list已經提供了類似於矩陣的表示形式,不過numpy為我們提供了更多的函數。

數組常用函數
1.where()按條件返回數組的索引值
2.take(a,index)從數組a中按照索引index取值
3.linspace(a,b,N)返回一個在(a,b)范圍內均勻分布的數組,元素個數為N個
4.a.fill()將數組的所有元素以指定的值填充
5.diff(a)返回數組a相鄰元素的差值構成的數組
6.sign(a)返回數組a的每個元素的正負符號
7.piecewise(a,[condlist],[funclist])數組a根據布爾型條件condlist返回對應元素結果
8.a.argmax(),a.argmin()返回a最大、最小元素的索引

改變數組維度
a.ravel(),a.flatten():將數組a展平成一維數組
a.shape=(m,n),a.reshape(m,n):將數組a轉換成m*n維數組
a.transpose,a.T轉置數組a

數組組合
1.hstack((a,b)),concatenate((a,b),axis=1)將數組a,b沿水平方向組合
2.vstack((a,b)),concatenate((a,b),axis=0)將數組a,b沿豎直方向組合
3.row_stack((a,b))將數組a,b按行方向組合
4.column_stack((a,b))將數組a,b按列方向組合

數組分割
1.split(a,n,axis=0),vsplit(a,n)將數組a沿垂直方向分割成n個數組
2.split(a,n,axis=1),hsplit(a,n)將數組a沿水平方向分割成n個數組

數組修剪和壓縮
1.a.clip(m,n)設置數組a的范圍為(m,n),數組中大於n的元素設定為n,小於m的元素設定為m
2.a.compress()返回根據給定條件篩選後的數組

數組屬性
1.a.dtype數組a的數據類型
2.a.shape數組a的維度
3.a.ndim數組a的維數
4.a.size數組a所含元素的總個數
5.a.itemsize數組a的元素在內存中所佔的位元組數
6.a.nbytes整個數組a所佔的內存空間7.a.astype(int)轉換a數組的類型為int型

數組計算
1.average(a,weights=v)對數組a以權重v進行加權平均
2.mean(a),max(a),min(a),middle(a),var(a),std(a)數組a的均值、最大值、最小值、中位數、方差、標准差
3.a.prod()數組a的所有元素的乘積
4.a.cumprod()數組a的元素的累積乘積
5.cov(a,b),corrcoef(a,b)數組a和b的協方差、相關系數
6.a.diagonal()查看矩陣a對角線上的元素7.a.trace()計算矩陣a的跡,即對角線元素之和

以上就是numpy中的常見函數。更多Python學習推薦:PyThon學習網教學中心。

Ⅵ Python科學計算包numpy用法


本文實例講述了Python科學計算包numpy用法。分享給大家供大家參考,具體如下:
1 數據結構
numpy使用一種稱為ndarray的類戚亂似Matlab的矩陣式數據結構管理數據,比python的列表和標准庫的array類更為強大,處理數據更為方便。
1.1 數組的生成
在numpy中,生成數組需要指定數據類型,默認是int32,即整數,可以通過dtype參數來指定,一般用到的有int32、bool、float32、uint32、complex,分別代旦念表整數、布爾值、浮模仔困點型、無符號整數和復數
一般而言,生成數組的方法有這么幾種:
以list列表為參數生成(用tolist方法即可轉換回list):
?
1
234
5
In[
3
]: a
=
array([
1
,
2
,
3
])
In[
4
]: a
Out[
4
]: array([
1
,
2
,
3
])
In[
5
]: a.tolist()
Out[
5
]: [
1
,

閱讀全文

與pythonnumpy求眾數相關的資料

熱點內容
辭海分冊pdf 瀏覽:933
安卓系統頁面怎麼調 瀏覽:773
壓縮文件的用法 瀏覽:32
如何用瀏覽器訪問伺服器地址 瀏覽:205
soft編譯器 瀏覽:113
三軸車床的編程指令 瀏覽:71
天生敏感pdf 瀏覽:565
西瓜星球伺服器怎麼刷鑽石 瀏覽:838
php生成chm 瀏覽:658
解釋程序和編譯程序產生目標嗎 瀏覽:609
dos命令rem 瀏覽:371
plc程序員水平高低 瀏覽:854
linux伺服器linux雲 瀏覽:373
大腳重置命令 瀏覽:130
app怎麼引導頁面 瀏覽:946
pdf轉換成w0rd 瀏覽:569
壓縮空氣屬於什麼能量類型 瀏覽:881
上海交警app怎麼付費 瀏覽:601
暗黑2怎麼切換伺服器 瀏覽:20
安卓如何玩港服游戲 瀏覽:350