導航:首頁 > 編程語言 > 時間預測序列模型python

時間預測序列模型python

發布時間:2023-08-13 05:37:17

⑴ 如何用python在10分鍾內建立一個預測模型

預測模型的分解過程
我總是集中於投入有質量的時間在建模的初始階段,比如,假設生成、頭腦風暴、討論或理解可能的結果范圍。所有這些活動都有助於我解決問題,並最終讓我設計出更強大的商業解決方案。為什麼你要在前面花費這段時間,這有充分的理由:
你有足夠的時間投入並且你是無經驗的(這是有影響的)
你不帶有其它數據觀點或想法的偏見(我總是建議,在深入研究數據之前做假設生成)
在後面的階段,你會急於完成該項目而沒有能力投入有質量的時間了。
這個階段需要投入高質量時間,因此我沒有提及時間表,不過我建議你把它作為標準的做法。這有助於你建立建立更好地預測模型,在後面的階段的只需較少的迭代工作。讓我們來看看建立第一個模型的剩餘階段的時間表:
數據描述性分析——50%的時間
數據預處理(缺失值和異常值修復)——40%的時間
數據建模——4%的時間
性能預測——6%的時間
讓我們一步一步完成每個過程(每一步投入預測的時間):
階段1:描述性分析/數據探索
在我剛開始成為數據科學家的時候,數據探索占據了我大量的時間。不過,隨著時間的推移,我已經把大量的數據操作自動化了。由於數據准備占據建立第一個模型工作量的50%,自動化的好處是顯而易見的。
這是我們的第一個基準模型,我們去掉任何特徵設計。因此,描述分析所需的時間僅限於了解缺失值和直接可見的大的特徵。在我的方法體系中,你將需要2分鍾來完成這一步(假設,100000個觀測數據集)。
我的第一個模型執行的操作:
確定ID,輸入特徵和目標特徵
確定分類和數值特徵
識別缺失值所在列
階段2:數據預處理(缺失值處理)
有許多方法可以解決這個問題。對於我們的第一個模型,我們將專注於智能和快速技術來建立第一個有效模型。
為缺失值創建假標志:有用,有時缺失值本身就攜帶了大量的信息。
用均值、中位數或其它簡單方法填補缺失值:均值和中位數填補都表現良好,大多數人喜歡用均值填補但是在有偏分布的情況下我建議使用中位數。其它智能的方法與均值和中位數填補類似,使用其它相關特徵填補或建立模型。比如,在Titanic生存挑戰中,你可以使用乘客名字的稱呼,比如:「Mr.」, 「Miss.」,」Mrs.」,」Master」,來填補年齡的缺失值,這對模型性能有很好的影響。
填補缺失的分類變數:創建一個新的等級來填補分類變數,讓所有的缺失值編碼為一個單一值比如,「New_Cat」,或者,你可以看看頻率組合,使用高頻率的分類變數來填補缺失值。
由於數據處理方法如此簡單,你可以只需要3到4分鍾來處理數據。
階段3:數據建模
根據不同的業務問題,我推薦使用GBM或RandomForest技術的任意一種。這兩個技術可以極其有效地創建基準解決方案。我已經看到數據科學家通常把這兩個方法作為他們的第一個模型同時也作為最後一個模型。這最多用去4到5分鍾。
階段4:性能預測
有各種各樣的方法可以驗證你的模型性能,我建議你將訓練數據集劃分為訓練集和驗證集(理想的比例是70:30)並且在70%的訓練數據集上建模。現在,使用30%的驗證數據集進行交叉驗證並使用評價指標進行性能評估。最後需要1到2分鍾執行和記錄結果。
本文的目的不是贏得比賽,而是建立我們自己的基準。讓我們用python代碼來執行上面的步驟,建立你的第一個有較高影響的模型。
讓我們開始付諸行動
首先我假設你已經做了所有的假設生成並且你擅長使用python的基本數據科學操作。我用一個數據科學挑戰的例子來說明。讓我們看一下結構:
步驟1:導入所需的庫,讀取測試和訓練數據集。
#導入pandas、numpy包,導入LabelEncoder、random、RandomForestClassifier、GradientBoostingClassifier函數
import pandas as pd
import numpy as np
fromsklearn.preprocessing import LabelEncoder
import random
fromsklearn.ensemble import RandomForestClassifier
from sklearn.ensembleimport GradientBoostingClassifier
#讀取訓練、測試數據集
train=pd.read_csv('C:/Users/AnalyticsVidhya/Desktop/challenge/Train.csv')
test=pd.read_csv('C:/Users/AnalyticsVidhya/Desktop/challenge/Test.csv')
#創建訓練、測試數據集標志
train='Train'
test='Test'
fullData =pd.concat(,axis=0) #聯合訓練、測試數據集
步驟2:該框架的第二步並不需要用到python,繼續下一步。
步驟3:查看數據集的列名或概要
fullData.columns # 顯示所有的列名稱
fullData.head(10) #顯示數據框的前10條記錄
fullData.describe() #你可以使用describe()函數查看數值域的概要
步驟4:確定a)ID變數 b)目標變數 c)分類變數 d)數值變數 e)其他變數。
ID_col =
target_col =
cat_cols =
num_cols= list(set(list(fullData.columns))-set(cat_cols)-set(ID_col)-set(target_col)-set(data_col))
other_col= #為訓練、測試數據集設置標識符
步驟5:識別缺失值變數並創建標志
fullData.isnull().any()#返回True或False,True意味著有缺失值而False相反
num_cat_cols = num_cols+cat_cols # 組合數值變數和分類變數
#為有缺失值的變數創建一個新的變數
# 對缺失值標志為1,否則為0
for var in num_cat_cols:
if fullData.isnull().any()=True:
fullData=fullData.isnull()*1
步驟6:填補缺失值
#用均值填補數值缺失值
fullData = fullData.fillna(fullData.mean(),inplace=True)
#用-9999填補分類變數缺失值
fullData = fullData.fillna(value = -9999)
步驟7:創建分類變數的標簽編碼器,將數據集分割成訓練和測試集,進一步,將訓練數據集分割成訓練集和測試集。
#創建分類特徵的標簽編碼器
for var in cat_cols:
number = LabelEncoder()
fullData = number.fit_transform(fullData.astype('str'))
#目標變數也是分類變數,所以也用標簽編碼器轉換
fullData = number.fit_transform(fullData.astype('str'))
train=fullData='Train']
test=fullData='Test']
train = np.random.uniform(0, 1, len(train)) <= .75
Train, Validate = train=True], train=False]
步驟8:將填補和虛假(缺失值標志)變數傳遞到模型中,我使用隨機森林來預測類。
features=list(set(list(fullData.columns))-set(ID_col)-set(target_col)-set(other_col))
x_train = Train.values
y_train = Train.values
x_validate = Validate.values
y_validate = Validate.values
x_test=test.values
random.seed(100)
rf = RandomForestClassifier(n_estimators=1000)
rf.fit(x_train, y_train)
步驟9:檢查性能做出預測
status = rf.predict_proba(x_validate)
fpr, tpr, _ = roc_curve(y_validate, status)
roc_auc = auc(fpr, tpr)
print roc_auc
final_status = rf.predict_proba(x_test)
test=final_status
test.to_csv('C:/Users/Analytics Vidhya/Desktop/model_output.csv',columns=)
現在可以提交了!

⑵ 如何在python中用lstm網路進行時間序列預測

時間序列建模器 圖表那個選項卡 左下勾選 擬合值 就可以了。我的為什麼不出現預測值啊啊啊啊~~

⑶ python 時間序列模型中forecast和predict的區別

舉例說明,2017.01.01-.017.12.31的周期為12的月度數據中,用ARIMA擬合得到模型model。
model.get_prediction(start='2017.09.01')則得到用擬合模型計算出來的樣本內2017.09.01-2017.12.31的預測值;
model.get_forcast(step=5)則得到樣本外推5期即2018.01.01-2018.05.31五個月的預測值;
註:
model.get_prediction也可做外推值的預測,設定好具體終止周期即可。

⑷ python時間序列(2)

時期(period)表示的是時間區間,比如數日、數月、數季、數年等。Period類所 表示的就是這種數據類型,其構造函數需要用到一個字元串或整數,以及表11-4中 的頻率:

這里,這個Period對象表示的是從2007年1月1日到2007年12月31日之間的整段時間。

只需對Period對象加上或減去一個整數即可達到根據其頻率進行位移的效果:

如果兩個Period對象擁有相同的頻率,則它們的差就是它們之間的單位數量:

period_range函數可用於創建規則的時期范圍:

PeriodIndex類保存了一組Period,它可以在任何pandas數據結構中被用作軸索引:

如果你有一個字元串數組,你也可以使用PeriodIndex類:

Period和PeriodIndex對象都可以通過其asfreq方法被轉換成別的頻率。假設我們有 一個年度時期,希望將其轉換為當年年初或年末的一個月度時期。該任務非常簡 單:

你可以將Period('2007','A-DEC')看做一個被劃分為多個月度時期的時間段中的游 標。圖11-1對此進行了說明。
對於一個不以12月結束的財政年度,月度子時期的歸屬情況就不一樣了:

在將高頻率轉換為低頻率時,超時期(superperiod)是由子時期(subperiod)所 屬的位置決定的。例如,在A-JUN頻率中,月份「2007年8月」實際上是屬於周期「2008年」的:

完整的PeriodIndex或TimeSeries的頻率轉換方式也是如此:

這里,根據年度時期的第一個月,每年的時期被取代為每月的時期。
如果我們想要 每年的最後一個工作日,我們可以使用「B」頻率,並指明想要該時期的末尾:

未完待續。。。

⑸ python時間序列模型預測為什麼時一條直線

python時間序列模型預測時一條直線是因為是線性模型的原因。線性模型也稱作趨勢模型,它表示一個時間序列可以用一條直線來表示。它的基本等式:以一個公司的銷售總額為例,一開始的初始是5000,每隔一個時間步長增加2500。指數平滑法是時間序列分析方法中的一種。它是一種用於預測未來發展趨勢的建模演算法。它有三種不同形式:一次指數平滑法、二次指數平滑法、及三次指數平滑法。三種指數平滑法都要更新上一時間步長的計算結果,並使用當前時間步長的數據中包含的新信息。通過混合新信息和舊信息來實現。

⑹ 如何在Python中用LSTM網路進行時間序列預測

時間序列模型

時間序列預測分析就是利用過去一段時間內某事件時間的特徵來預測未來一段時間內該事件的特徵。這是一類相對比較復雜的預測建模問題,和回歸分析模型的預測不同,時間序列模型是依賴於事件發生的先後順序的,同樣大小的值改變順序後輸入模型產生的結果是不同的。
舉個栗子:根據過去兩年某股票的每天的股價數據推測之後一周的股價變化;根據過去2年某店鋪每周想消費人數預測下周來店消費的人數等等

RNN 和 LSTM 模型

時間序列模型最常用最強大的的工具就是遞歸神經網路(recurrent neural network, RNN)。相比與普通神經網路的各計算結果之間相互獨立的特點,RNN的每一次隱含層的計算結果都與當前輸入以及上一次的隱含層結果相關。通過這種方法,RNN的計算結果便具備了記憶之前幾次結果的特點。

典型的RNN網路結構如下:

4. 模型訓練和結果預測
將上述數據集按4:1的比例隨機拆分為訓練集和驗證集,這是為了防止過度擬合。訓練模型。然後將數據的X列作為參數導入模型便可得到預測值,與實際的Y值相比便可得到該模型的優劣。

實現代碼

  • 時間間隔序列格式化成所需的訓練集格式

  • import pandas as pdimport numpy as npdef create_interval_dataset(dataset, look_back):

  • """ :param dataset: input array of time intervals :param look_back: each training set feature length :return: convert an array of values into a dataset matrix. """

  • dataX, dataY = [], [] for i in range(len(dataset) - look_back):

  • dataX.append(dataset[i:i+look_back])

  • dataY.append(dataset[i+look_back]) return np.asarray(dataX), np.asarray(dataY)


  • df = pd.read_csv("path-to-your-time-interval-file")

  • dataset_init = np.asarray(df) # if only 1 columndataX, dataY = create_interval_dataset(dataset, lookback=3) # look back if the training set sequence length

  • 這里的輸入數據來源是csv文件,如果輸入數據是來自資料庫的話可以參考這里

  • LSTM網路結構搭建

  • import pandas as pdimport numpy as npimport randomfrom keras.models import Sequential, model_from_jsonfrom keras.layers import Dense, LSTM, Dropoutclass NeuralNetwork():

  • def __init__(self, **kwargs):

  • """ :param **kwargs: output_dim=4: output dimension of LSTM layer; activation_lstm='tanh': activation function for LSTM layers; activation_dense='relu': activation function for Dense layer; activation_last='sigmoid': activation function for last layer; drop_out=0.2: fraction of input units to drop; np_epoch=10, the number of epoches to train the model. epoch is one forward pass and one backward pass of all the training examples; batch_size=32: number of samples per gradient update. The higher the batch size, the more memory space you'll need; loss='mean_square_error': loss function; optimizer='rmsprop' """

  • self.output_dim = kwargs.get('output_dim', 8) self.activation_lstm = kwargs.get('activation_lstm', 'relu') self.activation_dense = kwargs.get('activation_dense', 'relu') self.activation_last = kwargs.get('activation_last', 'softmax') # softmax for multiple output

  • self.dense_layer = kwargs.get('dense_layer', 2) # at least 2 layers

  • self.lstm_layer = kwargs.get('lstm_layer', 2) self.drop_out = kwargs.get('drop_out', 0.2) self.nb_epoch = kwargs.get('nb_epoch', 10) self.batch_size = kwargs.get('batch_size', 100) self.loss = kwargs.get('loss', 'categorical_crossentropy') self.optimizer = kwargs.get('optimizer', 'rmsprop') def NN_model(self, trainX, trainY, testX, testY):

  • """ :param trainX: training data set :param trainY: expect value of training data :param testX: test data set :param testY: epect value of test data :return: model after training """

  • print "Training model is LSTM network!"

  • input_dim = trainX[1].shape[1]

  • output_dim = trainY.shape[1] # one-hot label

  • # print predefined parameters of current model:

  • model = Sequential() # applying a LSTM layer with x dim output and y dim input. Use dropout parameter to avoid overfitting

  • model.add(LSTM(output_dim=self.output_dim,

  • input_dim=input_dim,

  • activation=self.activation_lstm,

  • dropout_U=self.drop_out,

  • return_sequences=True)) for i in range(self.lstm_layer-2):

  • model.add(LSTM(output_dim=self.output_dim,

  • input_dim=self.output_dim,

  • activation=self.activation_lstm,

  • dropout_U=self.drop_out,

  • return_sequences=True)) # argument return_sequences should be false in last lstm layer to avoid input dimension incompatibility with dense layer

  • model.add(LSTM(output_dim=self.output_dim,

  • input_dim=self.output_dim,

  • activation=self.activation_lstm,

  • dropout_U=self.drop_out)) for i in range(self.dense_layer-1):

  • model.add(Dense(output_dim=self.output_dim,

  • activation=self.activation_last))

  • model.add(Dense(output_dim=output_dim,

  • input_dim=self.output_dim,

  • activation=self.activation_last)) # configure the learning process

  • model.compile(loss=self.loss, optimizer=self.optimizer, metrics=['accuracy']) # train the model with fixed number of epoches

  • model.fit(x=trainX, y=trainY, nb_epoch=self.nb_epoch, batch_size=self.batch_size, validation_data=(testX, testY)) # store model to json file

  • model_json = model.to_json() with open(model_path, "w") as json_file:

  • json_file.write(model_json) # store model weights to hdf5 file

  • if model_weight_path: if os.path.exists(model_weight_path):

  • os.remove(model_weight_path)

  • model.save_weights(model_weight_path) # eg: model_weight.h5

  • return model

  • 這里寫的只涉及LSTM網路的結構搭建,至於如何把數據處理規范化成網路所需的結構以及把模型預測結果與實際值比較統計的可視化,就需要根據實際情況做調整了。

    閱讀全文

    與時間預測序列模型python相關的資料

    熱點內容
    辭海分冊pdf 瀏覽:931
    安卓系統頁面怎麼調 瀏覽:771
    壓縮文件的用法 瀏覽:32
    如何用瀏覽器訪問伺服器地址 瀏覽:205
    soft編譯器 瀏覽:113
    三軸車床的編程指令 瀏覽:71
    天生敏感pdf 瀏覽:565
    西瓜星球伺服器怎麼刷鑽石 瀏覽:838
    php生成chm 瀏覽:658
    解釋程序和編譯程序產生目標嗎 瀏覽:609
    dos命令rem 瀏覽:371
    plc程序員水平高低 瀏覽:854
    linux伺服器linux雲 瀏覽:373
    大腳重置命令 瀏覽:130
    app怎麼引導頁面 瀏覽:946
    pdf轉換成w0rd 瀏覽:569
    壓縮空氣屬於什麼能量類型 瀏覽:881
    上海交警app怎麼付費 瀏覽:601
    暗黑2怎麼切換伺服器 瀏覽:20
    安卓如何玩港服游戲 瀏覽:350