⑴ java中類載入器是怎麼工作的
JVM將類載入過程分為三個步驟:裝載(Load),鏈接(Link)和初始化(Initialize)
鏈接又分為三個步驟,驗證、准備、解析
1) 裝載:查找並載入類的二進制數據;
2)鏈接:
驗證:確保被載入類的正確性;
准備:為類的靜態變數分配內存,並將其初始化為默認值;
解析:把類中的符號引用轉換為直接引用;
3)初始化:為類的靜態變數賦予正確的初始值;
那為什麼我要有驗證這一步驟呢?首先如果由編譯器生成的class文件,它肯定是符合JVM位元組碼格式的,但是萬一有高手自己寫一個class文件,讓JVM載入並運行,用於惡意用途,就不妙了,因此這個class文件要先過驗證這一關,不符合的話不會讓它繼續執行的,也是為了安全考慮吧。
准備階段和初始化階段看似有點牟盾,其實是不牟盾的,如果類中有語句:private static int a = 10,它的執行過程是這樣的,首先位元組碼文件被載入到內存後,先進行鏈接的驗證這一步驟,驗證通過後准備階段,給a分配內存,因為變數a是static的,所以此時a等於int類型的默認初始值0,即a=0,然後到解析(後面在說),到初始化這一步驟時,才把a的真正的值10賦給a,此時
⑵ java中反射實例類裝載的步驟及簡要闡述
java反射和類裝載
反射機制:
Person p=new Person();
這是什麼?當然是實例化一個對象了.可是這種實例化對象的方法存在一個問題,那就是必須要知道類名才可以實例化它的對象,這樣我們在應用方面就會受到限制.那麼有沒有這樣一種方式,讓我們不知道這個類的類名就可以實例化它的對象呢?Thank Goodness!幸虧我們用的是java, java就提供了這樣的機制.
1).java程序在運行時可以獲得任何一個類的位元組碼信息,包括類的修飾符(public,static等),基類(超類,父類),實現的介面,欄位和方法等信息.
2).java程序在運行時可以根據位元組碼信息來創建該類的實例對象,改變對象的欄位內容和調用對象方法.
這樣的機制就叫反射技術.可以想像光學中的反射,就像我們照鏡子,鏡子中又出現一個自己(比喻可能不太恰當,但是足以表達清楚意思了).反射技術提供了一種通用的動態連接程序組件的方法,不必要把程序所需要的目標類硬編碼到源程序中,從而使得我們可以創建靈活的程序.
反射的實現步驟( 不問不需要答) ,
1、獲取類的常用方式有三種: a) Class.forName("包名.類名"),最常用、推薦;b) 包名.類名.class 最簡捷;c) 對象.getClass 的方式獲得。
2、對象的實例化,上面已經獲取了類,只需要調用類的實例化方法,類.newInstance()便可。
3、獲取屬性和構造等,可以參考 JavaApi 的調用,類. getDeclaredFields,類. getConstructor(..)等。
Java的反射機制是通過反射API來實現的,它允許程序在運行過程中取得任何一個已知名稱的類的內部信息.反射API位於java.lang.reflect包中.主要包括以下幾類:
1).Constructor類:用來描述一個類的構造方法
2).Field類:用來描述一個類的成員變數
3).Method類:用來描述一個類的方法.
4).Modifer類:用來描述類內各元素的修飾符
5).Array:用來對數組進行操作.
Constructor,Field,Method這三個類都是JVM(虛擬機)在程序運行時創建的,用來表示載入類中相應的成員.這三個類都實現了java.lang.reflect.Member介面,Member介面定義了獲取類成員或構造方法等信息的方法.要使用這些反射API,必須先得到要操作的對象或類的Class類的實例.通過調用Class類的newInstance方法(只能調用類的默認構造方法)可以創建類的實例.這樣有局限性,我們可以先沖類的Class實例獲取類需要的構造方法,然後在利用反射來創建類的一個實例.
類載入機制:
類的載入機制可以分為載入-鏈接-初始化三個階段,鏈接又可以分為驗證、准備、解析三個過程。
載入:通過類的載入器查找並載入二進制位元組流的過程,在堆內存中的方法區生成 一個代表這個類的 java.lang.Class 對象,作為這個類的數據請求入口。(這里可以把上面類載入器載入文件的過程描述一下(參考版本一,不作重復))。
驗證:主要是對一些詞法、語法進行規范性校驗,避免對 JVM 本身安全造成危害; 比如對文件格式,位元組碼驗證,無數據驗證等。但驗證階段是非必須的,可以通過參數 設置來進行關閉,以提高載入的時效。
准備:對類變數分配內存,並且對類變數預初始化,初始化成數據類型的原始值, 比如 static int a=11,會被初始化成成 a=0;如果是 static double a =11,則會被初始化成 a=0.0; 而成員變數只會成實例化後的堆中初始化。
解析:把常量池中的符號引用轉換為直接引用的過程。
初始化:對類的靜態變數和靜態塊中的變數進行初始化。(上面的准備階段可以作為 預初始化,初始到變數類型的原值,但如果被 final 修飾會進行真正初始化)
上面載入、鏈接、初始化的各個階段並不是彼此獨立,而是交叉進行,這點很重要 。
***class.forName和 classloader的區別
Class.forName 和 ClassLoader 都是用來裝載類的,對於類的裝載一般為分三個階段載入、鏈接、編譯,它們裝載類的方式是有區別。
首先看一下 Class.forName(..),forName(..)方法有一個重載方法 forName(className,boolean,ClassLoader),它有三個參數,第一個參數是類的包路徑,第二個參數是 boolean
類型,為 true 地表示 Loading 時會進行初始化,第三個就是指定一個載入器;當你調用class.forName(..)時,默認調用的是有三個參數的重載方法,第二個參數默認傳入 true,第三個參數默認使用的是當前類載入時用的載入器。
ClassLoader.loadClass()也有一個重載方法,從源碼中可以看出它默認調的是它的重載 方法 loadClass(name, false),當第二參數為 false 時,說明類載入時不會被鏈接。這也是兩者之間最大區別,前者在載入的時候已經初始化,後者在載入的時候還沒有鏈接。如果你需要在載入時初始化一些東西,就要用 Class.forName 了,比如我們常用的驅動載入, 實際上它的注冊動作就是在載入時的一個靜態塊中完成的。所以它不能被 ClassLoader 載入代替。
⑶ Java中類載入出現在哪個階段,編譯期和運行期 類載入和類裝載是一樣的嗎
使用的類,編譯/運行時都會被載入。
載入/裝載沒有區別,翻譯的詞彙選擇因人而異了
運行 javac /java 時 加上 -verbose 選項就可以看到了。
⑷ 誰能簡單闡述下java編譯執行的過程
Java虛擬機(JVM)是可運行Java代碼的假想計算機。
只要根據JVM規格描述將解釋器移植到特定的計算機上,就能保證經過編譯的任何Java代碼能夠在該系統上運行。
本文首先簡要介紹從Java文件的編譯到最終執行的過程,隨後對JVM規格描述作一說明。
一.Java源文件的編譯、下載、解釋和執行
Java應用程序的開發周期包括編譯、下載、解釋和執行幾個部分。
Java編譯程序將Java源程序翻譯為JVM可執行代碼?位元組碼。
這一編譯過程同C/C++的編譯有些不同。
當C編譯器編譯生成一個對象的代碼時,該代碼是為在某一特定硬體平台運行而產生的。
因此,在編譯過程中,編譯程序通過查表將所有對符號的引用轉換為特定的內存偏移量,以保證程序運行。
Java編譯器卻不將對變數和方法的引用編譯為數值引用,也不確定程序執行過程中的內存布局,而是將這些符號引用信息保留在位元組碼中,由解釋器在運行過程中創立內存布局,然後再通過查表來確定一個方法所在的地址。
這樣就有效的保證了Java的可移植性和安全性。
運行JVM位元組碼的工作是由解釋器來完成的。
解釋執行過程分三部進行:代碼的裝入、代碼的校驗和代碼的執行。
裝入代碼的工作由"類裝載器"(classloader)完成。
類裝載器負責裝入運行一個程序需要的所有代碼,這也包括程序代碼中的類所繼承的類和被其調用的類。
當類裝載器裝入一個類時,該類被放在自己的名字空間中。
除了通過符號引用自己名字空間以外的類,類之間沒有其他辦法可以影響其他類。
在本台計算機上的所有類都在同一地址空間內,而所有從外部引進的類,都有一個自己獨立的名字空間。
這使得本地類通過共享相同的名字空間獲得較高的運行效率,同時又保證它們與從外部引進的類不會相互影響。
當裝入了運行程序需要的所有類後,解釋器便可確定整個可執行程序的內存布局。
解釋器為符號引用同特定的地址空間建立對應關系及查詢表。
通過在這一階段確定代碼的內存布局,Java很好地解決了由超類改變而使子類崩潰的問題,同時也防止了代碼對地址的非法訪問。
隨後,被裝入的代碼由位元組碼校驗器進行檢查。
校驗器可發現操作數棧溢出,非法數據類型轉化等多種錯誤。
通過校驗後,代碼便開始執行了。
Java位元組碼的執行有兩種方式:
1.即時編譯方式:解釋器先將位元組碼編譯成機器碼,然後再執行該機器碼。
2.解釋執行方式:解釋器通過每次解釋並執行一小段代碼來完成Java位元組碼程序的所有操作。
通常採用的是第二種方法。
由於JVM規格描述具有足夠的靈活性,這使得將位元組碼翻譯為機器代碼的工作
具有較高的效率。
對於那些對運行速度要求較高的應用程序,解釋器可將Java位元組碼即時編譯為機器碼,從而很好地保證了Java代碼的可移植性和高性能。
二.JVM規格描述
JVM的設計目標是提供一個基於抽象規格描述的計算機模型,為解釋程序開發人員提很好的靈活性,同時也確保Java代碼可在符合該規范的任何系統上運行。
JVM對其實現的某些方面給出了具體的定義,特別是對Java可執行代碼,即位元組碼(Bytecode)的格式給出了明確的規格。
這一規格包括操作碼和操作數的語法和數值、標識符的數值表示方式、以及Java類文件中的Java對象、常量緩沖池在JVM的存儲映象。
這些定義為JVM解釋器開發人員提供了所需的信息和開發環境。
Java的設計者希望給開發人員以隨心所欲使用Java的自由。
JVM定義了控制Java代碼解釋執行和具體實現的五種規格,它們是:
JVM指令系統
JVM寄存器
JVM棧結構
JVM碎片回收堆
JVM存儲區
2.1JVM指令系統
JVM指令系統同其他計算機的指令系統極其相似。
Java指令也是由操作碼和操作數兩部分組成。
操作碼為8位二進制數,操作數進緊隨在操作碼的後面,其長度根據需要而不同。
操作碼用於指定一條指令操作的性質(在這里我們採用匯編符號的形式進行說明),如iload表示從存儲器中裝入一個整數,anewarray表示為一個新數組分配空間,iand表示兩個整數的"與",ret用於流程式控制制,表示從對某一方法的調用中返回。
當長度大於8位時,操作數被分為兩個以上位元組存放。
JVM採用了"bigendian"的編碼方式來處理這種情況,即高位bits存放在低位元組中。
這同Motorola及其他的RISCCPU採用的編碼方式是一致的,而與Intel採用的"littleendian"的編碼方式即低位bits存放在低位位元組的方法不同。
Java指令系統是以Java語言的實現為目的設計的,其中包含了用於調用方法和監視多先程系統的指令。
Java的8位操作碼的長度使得JVM最多有256種指令,目前已使用了160多種操作碼。
2.2JVM指令系統
所有的CPU均包含用於保存系統狀態和處理器所需信息的寄存器組。
如果虛擬機定義較多的寄存器,便可以從中得到更多的信息而不必對棧或內存進行訪問,這有利於提高運行速度。
然而,如果虛擬機中的寄存器比實際CPU的寄存器多,在實現虛擬機時就會佔用處理器大量的時間來用常規存儲器模擬寄存器,這反而會降低虛擬機的效率。
針對這種情況,JVM只設置了4個最為常用的寄存器。
它們是:
pc程序計數器
optop操作數棧頂指針
frame當前執行環境指針
vars指向當前執行環境中第一個局部變數的指針
所有寄存器均為32位。
pc用於記錄程序的執行。
optop,frame和vars用於記錄指向Java棧區的指針。
2.3JVM棧結構
作為基於棧結構的計算機,Java棧是JVM存儲信息的主要方法。
當JVM得到一個Java位元組碼應用程序後,便為該代碼中一個類的每一個方法創建一個棧框架,以保存該方法的狀態信息。
每個棧框架包括以下三類信息:
局部變數
執行環境
操作數棧
局部變數用於存儲一個類的方法中所用到的局部變數。
vars寄存器指向該變數表中的第一個局部變數。
執行環境用於保存解釋器對Java位元組碼進行解釋過程中所需的信息。
它們是:上次調用的方法、局部變數指針和操作數棧的棧頂和棧底指針。
執行環境是一個執行一個方法的控制中心。
例如:如果解釋器要執行iadd(整數加法),首先要從frame寄存器中找到當前執行環境,而後便從執行環境中找到操作數棧,從棧頂彈出兩個整數進行加法運算,最後將結果壓入棧頂。
操作數棧用於存儲運算所需操作數及運算的結果。
2.4JVM碎片回收堆
Java類的實例所需的存儲空間是在堆上分配的。
解釋器具體承擔為類實例分配空間的工作。
解釋器在為一個實例分配完存儲空間後,便開始記錄對該實例所佔用的內存區域的使用。
一旦對象使用完畢,便將其回收到堆中。
在Java語言中,除了new語句外沒有其他方法為一對象申請和釋放內存。
對內存進行釋放和回收的工作是由Java運行系統承擔的。
這允許Java運行系統的設計者自己決定碎片回收的方法。
在SUN公司開發的Java解釋器和HotJava環境中,碎片回收用後台線程的方式來執行。
這不但為運行系統提供了良好的性能,而且使程序設計人員擺脫了自己控制內存使用的風險。
2.5JVM存儲區
JVM有兩類存儲區:常量緩沖池和方法區。
常量緩沖池用於存儲類名稱、方法和欄位名稱以及串常量。
方法區則用於存儲Java方法的位元組碼。
對於這兩種存儲區域具體實現方式在JVM規格中沒有明確規定。
這使得Java應用程序的存儲布局必須在運行過程中確定,依賴於具體平台的實現方式。
JVM是為Java位元組碼定義的一種獨立於具體平台的規格描述,是Java平 *** 立性的基礎。
目前的JVM還存在一些限制和不足,有待於進一步的完善,但無論如何,JVM的思想是成功的。
對比分析:如果把Java原程序想像成我們的C++原程序,Java原程序編譯後生成的位元組碼就相當於C++原程序編譯後的80x86的機器碼(二進製程序文件),JVM虛擬機相當於80x86計算機系統,Java解釋器相當於80x86CPU。
在80x86CPU上運行的是機器碼,在Java解釋器上運行的是Java位元組碼。
Java解釋器相當於運行Java位元組碼的「CPU」,但該「CPU」不是通過硬體實現的,而是用軟體實現的。
Java解釋器實際上就是特定的平台下的一個應用程序。
只要實現了特定平台下的解釋器程序,Java位元組碼就能通過解釋器程序在該平台下運行,這是Java跨平台的根本。
當前,並不是在所有的平台下都有相應Java解釋器程序,這也是Java並不能在所有的平台下都能運行的原因,它只能在已實現了Java解釋器程序的平台下運行。
⑸ java中類裝載在什麼時候進行
java的類載入後且當使用階段完成之後,java類就進入了卸載階段,也就是所謂的釋放。
使用階段包括主動引用和被動引用,主動飲用會引起類的初始化,而被動引用不會引起類的初始化。
一個java類的完整的生命周期會經歷載入、連接、初始化、使用、和卸載五個階段,當然也有在載入或者連接之後沒有被初始化就直接被使用的情況,如圖所示:
PS:關於類的卸載,在類使用完之後,如果滿足下面的情況,類就會被卸載:
該類所有的實例都已經被回收,也就是java堆中不存在該類的任何實例。
載入該類的ClassLoader已經被回收。
該類對應的java.lang.Class對象沒有任何地方被引用,無法在任何地方通過反射訪問該類的方法。
如果以上三個條件全部滿足,jvm就會在方法區垃圾回收的時候對類進行卸載,類的卸載過程其實就是在方法區中清空類信息,java類的整個生命周期就結束了。