導航:首頁 > 編程語言 > 醫學圖像插值python

醫學圖像插值python

發布時間:2023-09-03 07:17:09

㈠ 圖像雙三次插值演算法原理及python實現

一. 圖像雙三次插值演算法原理:

        假設源圖像 A 大小為 m*n ,縮放後的目標圖像 B 的大小為 M*N 。那麼根據比例我們可以得到 B(X,Y) 在 A 上的對應坐標為 A(x,y) = A( X*(m/M), Y*(n/N) ) 。在雙線性插值法中,我們選取 A(x,y) 的最近四個點。而在雙立方插值法中,我們選取的是最近的16個像素點作為計算目標圖像 B(X,Y) 處像素值的參數。如圖所示:

        如圖所示昌叢耐 P 點就是目標圖像 B 在 (X,Y) 處對應於源圖像中的位置,P 的坐標位置會出現小數部分,所以我們假設 P 的坐標為 P(x+u,y+v),其中 x,y 分別表示整數部分,u,v 分別表示小數部分。那麼我們就可以得到如圖所示的最近 16 個像素的位置,在這里用 a(i,j)(i,j=0,1,2,3) 來表示。 

        雙立方插值的目的就是通過找到一種關系,或者說系數,可以把這 16 個像素對於 P 處像素值的影響因子找出來,從而根據這個影響因子來獲得目標圖像對應點的像素值,達到圖像縮放的目的。 

     耐春   BiCubic基函數形式如下:

二. python實現雙三次插值演算法

from PIL import Image

import numpy as np

import math

# 產生16個像素點不同的權重

def BiBubic(x):

    x=abs(x)

    if x<=1:

        return 1-2*(x**2)+(x**3)

    elif x<2:

        return 4-8*x+5*(x**2)-(x**3)

    else:

        return 0

# 雙三次插值演算法

# dstH為目標圖像的高,dstW為目標圖像的寬

def BiCubic_interpolation(img,dstH,dstW):

    scrH,scrW,_=img.shape

    #img=np.pad(img,((1,3),(1,3),(0,0)),'constant')

    retimg=np.zeros((dstH,dstW,3),dtype=np.uint8)

    for i in range(dstH):

        for j in range(dstW):

            scrx=i*(scrH/dstH)

            scry=j*(scrW/dstW)

            x=math.floor(scrx)

            y=math.floor(scry)

   鄭純         u=scrx-x

            v=scry-y

            tmp=0

            for ii in range(-1,2):

                for jj in range(-1,2):

                    if x+ii<0 or y+jj<0 or x+ii>=scrH or y+jj>=scrW:

                        continue

                    tmp+=img[x+ii,y+jj]*BiBubic(ii-u)*BiBubic(jj-v)

            retimg[i,j]=np.clip(tmp,0,255)

    return retimg

im_path='../paojie.jpg'

image=np.array(Image.open(im_path))

image2=BiCubic_interpolation(image,image.shape[0]*2,image.shape[1]*2)

image2=Image.fromarray(image2.astype('uint8')).convert('RGB')

image2.save('BiCubic_interpolation.jpg')

三. 實驗結果:

四. 參考內容:

         https://www.cnblogs.com/wojianxin/p/12516762.html

         https://blog.csdn.net/Ibelievesunshine/article/details/104942406

㈡ 在醫學圖像領域,python可以取代matlab嗎

python完全能取代Matlab。實際上身邊很多人就不用Matlab做醫學圖像方面的research
有幾個原因。
Python有人說是個glue語言,就是可以把一些其他語言寫成的腳本,軟體等,用python做個wrapper。醫學圖像經常需要處理大量文件,多個目錄,各種預處理,需要各種不同的軟體。Matlab不擅長處理這些,python更好。
如果直接用python寫演算法,scikit0-image等python的工具已經具備基本的圖像處理的而功能。Matlab裡面有些所謂高級演算法,一般也用不著。如果處理3D的數據,演算法包當然首推ITK。樓上說的ITKSnap就是基於ITK的。這個跟matlab沒關系。文件格式,Python支持nifti等很多格式。
另一個3D slicer處理三維圖像的軟體,也是有python介面的。 這是主流的醫學圖像的開源軟體。還有個Mevislab,好像也有python介面。
python作圖和Matlab相比,差不多,看個人喜好。
我在boston Mabla工作的同學說,他們公司現在Matlab都不怎麼開發,專注企業用戶,專注simulink了。
上邊有人問「值化、邊緣檢測、濾波、骨骼化、形態學上的膨脹與腐蝕、成像後的數據格式轉化」,這些都可以在python裡面做,ITK還有python借口,可以處理三維圖像,當然也可以處理二維。
未來是python的。

㈢ 如何應用Python處理醫學影像學中的DICOM信息

下面Python代碼來演示如何編程處理心血管冠脈造影DICOM圖像信息。

1. 導入主要框架:SimpleITK、pydicom、PIL、cv2和numpy
import SimpleITK as sitk
from PIL import Image
import pydicom
import numpy as np
import cv2

2. 應用SimpleITK框架來讀取DICOM文件的矩陣信息。如果DICOM圖像是三維螺旋CT圖像,則幀參數則代表CT掃描層數;而如果是造影動態電影圖像,則幀參數就是15幀/秒的電影圖像幀數。
def loadFile(filename):
ds = sitk.ReadImage(filename)
img_array = sitk.GetArrayFromImage(ds)
frame_num, width, height = img_array.shape
return img_array, frame_num, width, height

3. 應用pydicom來提取患者信息。
def loadFileInformation(filename):
information = {}
ds = pydicom.read_file(filename)
information['PatientID'] = ds.PatientID
information['PatientName'] = ds.PatientName
information['PatientBirthDate'] = ds.PatientBirthDate
information['PatientSex'] = ds.PatientSex
information['StudyID'] = ds.StudyID
information['StudyDate'] = ds.StudyDate
information['StudyTime'] = ds.StudyTime
information['InstitutionName'] = ds.InstitutionName
information['Manufacturer'] = ds.Manufacturer
information['NumberOfFrames'] = ds.NumberOfFrames
return information

4. 應用PIL來檢查圖像是否被提取。
def showImage(img_array, frame_num = 0):
img_bitmap = Image.fromarray(img_array[frame_num])
return img_bitmap

5. 採用CLAHE (Contrast Limited Adaptive Histogram Equalization)技術來優化圖像。
def limitedEqualize(img_array, limit = 4.0):
img_array_list = []
for img in img_array:
clahe = cv2.createCLAHE(clipLimit = limit, tileGridSize = (8,8))
img_array_list.append(clahe.apply(img))
img_array_limited_equalized = np.array(img_array_list)
return img_array_limited_equalized

㈣ 圖像處理的Python問題,怎麼解決

imtools.py裡面也要有numpy 的引用才對
def histeq(im,nbr_bins=256):
"""對一幅灰度圖像進行直方圖均衡化"""

#計算圖像的直方圖
imhist,bins = histogram(im.flatten(),nbr_bins,normed=True)
cdf = imhist.cumsum() #累計分布函數
cdf = 255 * cdf / cdf[-1] #歸一化

#使用累計分布函數的線性插值,計算新的像素
im2 = interp(im.flatten(),bins[:-1],cdf)

return im2.reshape(im.shape),cdf

以上代碼我定義在imtools.py文件里並且放在了python2.7里

然後我在num.py里引用他

Python code?
1
2
3
4
5
6
7
8
9
10

from PIL import Image
from pylab import *
from numpy import *
import imtools

im= array(Image.open('E:\\daima\\pydaima\\shijue\\tupian1\\gang2.jpg').convert('L'))

im2,cdf =imtools.histeq(im)

出現以下錯誤:
Traceback (most recent call last):
File "<pyshell#56>", line 1, in <mole>
a=imtools.histeq(im)
File "E:\daima\pydaima\shijue\imtools.py", line 32, in histeq
NameError: global name 'histogram' is not defined

㈤ 雙線性插值法原理 python實現

碼字不易,如果此文對你有所幫助,請幫忙點贊,感謝!

一. 雙線性插值法原理:

        ① 何為線性插值?

        插值就是在兩個數之間插入一個數,線性插值原理圖如下:

        ② 各種插值法:

        插值法的第一步都是相同的,計算目標圖(dstImage)的坐標點對應原圖(srcImage)中哪個坐標點來填充,計算公式為:

        srcX = dstX * (srcWidth/dstWidth)

        srcY = dstY * (srcHeight/dstHeight)

        (dstX,dstY)表示目標圖像的某個坐標點,(srcX,srcY)表示與之對應的原圖像的坐標點。srcWidth/dstWidth 和 srcHeight/dstHeight 分別表示寬和高的放縮比。

        那麼問題來了,通過這個公式算出來的 srcX, scrY 有可能是小數,但是原圖像坐標點是不存在小數的,都是整數,得想辦法把它轉換成整數才行。

        不同插值法的區別就體現在 srcX, scrY 是小數時,怎麼將其變成整數去取原圖像中的像素值。

        最近鄰插值(Nearest-neighborInterpolation):看名字就很直白,四捨五入選取最接近的整數。這樣的做法會導致像素變化不連續,在目標圖像中產生鋸齒邊緣。

        雙線性插值(Bilinear Interpolation):雙線性就是利用與坐標軸平行的兩條直線去把小數坐標分解到相鄰的四個整數坐標點。權重與距離成反比。

        雙三次插值(Bicubic Interpolation):與雙線性插值類似,只不過用了相鄰的16個點。但是需要注意的是,前面兩種方法能保證兩個方向的坐標權重和為1,但是雙三次插值不能保證這點,所以可能出現像素值越界的情況,需要截斷。

        ③ 雙線性插值演算法原理

        假如我們想得到未知函數 f 在點 P = (x, y) 的值,假設我們已知函數 f 在 Q11 = (x1, y1)、Q12 = (x1, y2), Q21 = (x2, y1) 以及 Q22 = (x2, y2) 四個點的值。最常見的情況,f就是一個像素點的像素值。首先在 x 方向進行線性插值,然後再在 y 方向上進行線性插值,最終得到雙線性插值的結果。

    ④ 舉例說明

二. python實現灰度圖像雙線性插值演算法:

灰度圖像雙線性插值放大縮小

import numpy as np

import math

import cv2

def double_linear(input_signal, zoom_multiples):

    '''

    雙線性插值

    :param input_signal: 輸入圖像

    :param zoom_multiples: 放大倍數

    :return: 雙線性插值後的圖像

    '''

    input_signal_cp = np.(input_signal)  # 輸入圖像的副本

    input_row, input_col = input_signal_cp.shape # 輸入圖像的尺寸(行、列)

    # 輸出圖像的尺寸

    output_row = int(input_row * zoom_multiples)

    output_col = int(input_col * zoom_multiples)

    output_signal = np.zeros((output_row, output_col)) # 輸出圖片

    for i in range(output_row):

        for j in range(output_col):

            # 輸出圖片中坐標 (i,j)對應至輸入圖片中的最近的四個點點(x1,y1)(x2, y2),(x3, y3),(x4,y4)的均值

            temp_x = i / output_row * input_row

            temp_y = j / output_col * input_col

            x1 = int(temp_x)

            y1 = int(temp_y)

            x2 = x1

            y2 = y1 + 1

            x3 = x1 + 1

            y3 = y1

            x4 = x1 + 1

            y4 = y1 + 1

            u = temp_x - x1

            v = temp_y - y1

            # 防止越界

            if x4 >= input_row:

                x4 = input_row - 1

                x2 = x4

                x1 = x4 - 1

                x3 = x4 - 1

            if y4 >= input_col:

                y4 = input_col - 1

                y3 = y4

                y1 = y4 - 1

                y2 = y4 - 1

            # 插值

            output_signal[i, j] = (1-u)*(1-v)*int(input_signal_cp[x1, y1]) + (1-u)*v*int(input_signal_cp[x2, y2]) + u*(1-v)*int(input_signal_cp[x3, y3]) + u*v*int(input_signal_cp[x4, y4])

    return output_signal

# Read image

img = cv2.imread("../paojie_g.jpg",0).astype(np.float)

out = double_linear(img,2).astype(np.uint8)

# Save result

cv2.imshow("result", out)

cv2.imwrite("out.jpg", out)

cv2.waitKey(0)

cv2.destroyAllWindows()

三. 灰度圖像雙線性插值實驗結果:

四. 彩色圖像雙線性插值python實現

def BiLinear_interpolation(img,dstH,dstW):

    scrH,scrW,_=img.shape

    img=np.pad(img,((0,1),(0,1),(0,0)),'constant')

    retimg=np.zeros((dstH,dstW,3),dtype=np.uint8)

    for i in range(dstH-1):

        for j in range(dstW-1):

            scrx=(i+1)*(scrH/dstH)

            scry=(j+1)*(scrW/dstW)

            x=math.floor(scrx)

            y=math.floor(scry)

            u=scrx-x

            v=scry-y

            retimg[i,j]=(1-u)*(1-v)*img[x,y]+u*(1-v)*img[x+1,y]+(1-u)*v*img[x,y+1]+u*v*img[x+1,y+1]

    return retimg

im_path='../paojie.jpg'

image=np.array(Image.open(im_path))

image2=BiLinear_interpolation(image,image.shape[0]*2,image.shape[1]*2)

image2=Image.fromarray(image2.astype('uint8')).convert('RGB')

image2.save('3.png')

五. 彩色圖像雙線性插值實驗結果:

六. 最近鄰插值演算法和雙三次插值演算法可參考:

        ① 最近鄰插值演算法: https://www.cnblogs.com/wojianxin/p/12515061.html

         https://blog.csdn.net/Ibelievesunshine/article/details/104936006

        ② 雙三次插值演算法: https://www.cnblogs.com/wojianxin/p/12516762.html

        https://blog.csdn.net/Ibelievesunshine/article/details/104942406

七. 參考內容:

         https://www.cnblogs.com/wojianxin/p/12515061.html

         https://blog.csdn.net/Ibelievesunshine/article/details/104939936

㈥ 如何通過python實現三次樣條插值

spline函數可以實現三次樣條插值 x = 0:10; y = sin(x); xx = 0:.25:10; yy = spline(x,y,xx); plot(x,y,'o',xx,yy) 另外fnplt csapi這兩個函數也是三次樣條插值函數,具體你可以help一下!

㈦ 在Python程序中的插值誤差問題,怎麼解決

代碼如下所示:import numpy as npfrom matplotlib import pyplot as pltfrom scipy.interpolate import interp1dx=np.linspace(0,10*np.pi,num=20)y=np.sin(x)f1=interp1d(x,y,kind='linear')#線性插值f2=interp1d(x,y,kind='cubic')#三次樣條插值x_pred=np.linspace(0,10*np.pi,num=1000)y1=f1(x_pred)y2=f2(x_pred)plt.figure()plt.plot(x_pred,y1,'r',label='linear')plt.plot(x,f1(x),'b--','origin')plt.legend()plt.show()plt.figure()plt.plot(x_pred,y2,'b--',label='cubic')plt.legend()plt.show()

㈧ 10 個 Python 圖像編輯工具

以下提到的這些 Python 工具在編輯圖像、操作圖像底層數據方面都提供了簡單直接的方法。

-- Parul Pandey

當今的世界充滿了數據,而圖像數據就是其中很重要的一部分。但只有經過處理和分析,提高圖像的質量,從中提取出有效地信息,才能利用到這些圖像數據。

常見的圖像處理操作包括顯示圖像,基本的圖像操作,如裁剪、翻轉、旋轉;圖像的分割、分類、特徵提取;圖像恢復;以及圖像識別等等。Python 作為一種日益風靡的科學編程語言,是這些圖像處理操作的最佳選擇。同時,在 Python 生態當中也有很多可以免費使用的優秀的圖像處理工具。

下文將介紹 10 個可以用於圖像處理任務的 Python 庫,它們在編輯圖像、查看圖像底層數據方面都提供了簡單直接的方法。

scikit-image 是一個結合 NumPy 數組使用的開源 Python 工具,它實現了可用於研究、教育、工業應用的演算法和應用程序。即使是對於剛剛接觸 Python 生態圈的新手來說,它也是一個在使用上足夠簡單的庫。同時它的代碼質量也很高,因為它是由一個活躍的志願者社區開發的,並且通過了 同行評審(peer review)。

scikit-image 的 文檔 非常完善,其中包含了豐富的用例。

可以通過導入 skimage 使用,大部分的功能都可以在它的子模塊中找到。

圖像濾波(image filtering):

使用 match_template() 方法實現 模板匹配(template matching):

在 展示頁面 可以看到更多相關的例子。

NumPy 提供了對數組的支持,是 Python 編程的一個核心庫。圖像的本質其實也是一個包含像素數據點的標准 NumPy 數組,因此可以通過一些基本的 NumPy 操作(例如切片、 掩膜(mask)、 花式索引(fancy indexing)等),就可以從像素級別對圖像進行編輯。通過 NumPy 數組存儲的圖像也可以被 skimage 載入並使用 matplotlib 顯示。

在 NumPy 的 官方文檔 中提供了完整的代碼文檔和資源列表。

使用 NumPy 對圖像進行 掩膜(mask)操作:

像 NumPy 一樣, SciPy 是 Python 的一個核心科學計算模塊,也可以用於圖像的基本操作和處理。尤其是 SciPy v1.1.0 中的 scipy.ndimage 子模塊,它提供了在 n 維 NumPy 數組上的運行的函數。SciPy 目前還提供了 線性和非線性濾波(linear and non-linear filtering)、 二值形態學(binary morphology)、 B 樣條插值(B-spline interpolation)、 對象測量(object measurements)等方面的函數。

在 官方文檔 中可以查閱到 scipy.ndimage 的完整函數列表。

使用 SciPy 的 高斯濾波 對圖像進行模糊處理:

PIL (Python Imaging Library) 是一個免費 Python 編程庫,它提供了對多種格式圖像文件的打開、編輯、保存的支持。但在 2009 年之後 PIL 就停止發布新版本了。幸運的是,還有一個 PIL 的積極開發的分支 Pillow ,它的安裝過程比 PIL 更加簡單,支持大部分主流的操作系統,並且還支持 Python 3。Pillow 包含了圖像的基礎處理功能,包括像素點操作、使用內置卷積內核進行濾波、顏色空間轉換等等。

Pillow 的 官方文檔 提供了 Pillow 的安裝說明自己代碼庫中每一個模塊的示例。

使用 Pillow 中的 ImageFilter 模塊實現圖像增強:

OpenCV(Open Source Computer Vision 庫)是計算機視覺領域最廣泛使用的庫之一, OpenCV-Python 則是 OpenCV 的 Python API。OpenCV-Python 的運行速度很快,這歸功於它使用 C/C++ 編寫的後台代碼,同時由於它使用了 Python 進行封裝,因此調用和部署的難度也不大。這些優點讓 OpenCV-Python 成為了計算密集型計算機視覺應用程序的一個不錯的選擇。

入門之前最好先閱讀 OpenCV2-Python-Guide 這份文檔。

使用 OpenCV-Python 中的 金字塔融合(Pyramid Blending)將蘋果和橘子融合到一起:

SimpleCV 是一個開源的計算機視覺框架。它支持包括 OpenCV 在內的一些高性能計算機視覺庫,同時不需要去了解 位深度(bit depth)、文件格式、 色彩空間(color space)之類的概念,因此 SimpleCV 的學習曲線要比 OpenCV 平緩得多,正如它的口號所說,「將計算機視覺變得更簡單」。SimpleCV 的優點還有:

官方文檔 簡單易懂,同時也附有大量的學慣用例。

文檔 包含了安裝介紹、示例以及一些 Mahotas 的入門教程。

Mahotas 力求使用少量的代碼來實現功能。例如這個 Finding Wally 游戲 :

ITK (Insight Segmentation and Registration Toolkit)是一個為開發者提供普適性圖像分析功能的開源、跨平台工具套件, SimpleITK 則是基於 ITK 構建出來的一個簡化層,旨在促進 ITK 在快速原型設計、教育、解釋語言中的應用。SimpleITK 作為一個圖像分析工具包,它也帶有 大量的組件 ,可以支持常規的濾波、圖像分割、 圖像配准(registration)功能。盡管 SimpleITK 使用 C++ 編寫,但它也支持包括 Python 在內的大部分編程語言。

有很多 Jupyter Notebooks 用例可以展示 SimpleITK 在教育和科研領域中的應用,通過這些用例可以看到如何使用 Python 和 R 利用 SimpleITK 來實現互動式圖像分析。

使用 Python + SimpleITK 實現的 CT/MR 圖像配准過程:

pgmagick 是使用 Python 封裝的 GraphicsMagick 庫。 GraphicsMagick 通常被認為是圖像處理界的瑞士軍刀,因為它強大而又高效的工具包支持對多達 88 種主流格式圖像文件的讀寫操作,包括 DPX、GIF、JPEG、JPEG-2000、PNG、PDF、PNM、TIFF 等等。

pgmagick 的 GitHub 倉庫 中有相關的安裝說明、依賴列表,以及詳細的 使用指引 。

圖像縮放:

邊緣提取:

Cairo 是一個用於繪制矢量圖的二維圖形庫,而 Pycairo 是用於 Cairo 的一組 Python 綁定。矢量圖的優點在於做大小縮放的過程中不會丟失圖像的清晰度。使用 Pycairo 可以在 Python 中調用 Cairo 的相關命令

Pycairo 的 GitHub 倉庫 提供了關於安裝和使用的詳細說明,以及一份簡要介紹 Pycairo 的 入門指南 。

使用 Pycairo 繪制線段、基本圖形、 徑向漸變(radial gradients):

以上就是 Python 中的一些有用的圖像處理庫,無論你有沒有聽說過、有沒有使用過,都值得試用一下並了解它們。

via: https://opensource.com/article/19/3/python-image-manipulation-tools

作者: Parul Pandey 選題: lujun9972 譯者: HankChow 校對: wxy

㈨ python可以用來處理圖像嗎

可以的,
PythonWare公司提供了免費的Python圖像處理工具包PIL(Python Image Library),該軟體包提供了基本的圖像處理功能,如:

改變圖像大小,旋轉圖像,圖像格式轉換,色場空間轉換,圖像增強,直方圖處理,插值和濾波等等。雖然在這個軟體包上要實現類似MATLAB中的復雜的圖像處理演算法並不太適合,但是Python的快速開發能力以及面向對象等等諸多特點使得它非常適合用來進行原型開發。

在PIL中,任何一副圖像都是用一個Image對象表示,而這個類由和它同名的模塊導出,因此,最簡單的形式是這樣的:

import Image img = Image.open(「dip.jpg」)
注意:第一行的Image是模塊名;第二行的img是一個Image對象;
Image類是在Image模塊中定義的。關於Image模塊和Image類,切記不要混淆了。現在,我們就可以對img進行各種操作了,所有對img的
操作最終都會反映到到dip.img圖像上。

PIL提供了豐富的功能模塊:Image,ImageDraw,ImageEnhance,ImageFile等等。最常用到的模塊是
Image,ImageDraw,ImageEnhance這三個模塊。下面我對此分別做一介紹。關於其它模塊的使用請參見說明文檔.有關PIL軟體包和
相關的說明文檔可在PythonWare的站點www.Pythonware.com上獲得。

Image模塊:

Image模塊是PIL最基本的模塊,其中導出了Image類,一個Image類實例對象就對應了一副圖像。同時,Image模塊還提供了很多有用的函數。

(1)打開一文件:
import Image img = Image.open(「dip.jpg」)

這將返回一個Image類實例對象,後面的所有的操作都是在img上完成的。

(2)調整文件大小:

import Image img = Image.open("img.jpg") new_img = img.resize
((128,128),Image.BILINEAR) new_img.save("new_img.jpg")

原來的圖像大小是256x256,現在,保存的new_img.jpg的大小是128x128。

就是這么簡單,需要說明的是Image.BILINEAR指定採用雙線性法對像素點插值。

在批處理或者簡單的Python圖像處理任務中,採用Python和PIL(Python Image Library)的組合來完成圖像處理任務是一個很不錯的選擇。設想有一個需要對某個文件夾下的所有圖像將對比度提高2倍的任務。用Python來做將是十分簡單的。當然,我也不得不承認Python在圖像處理方面的功能還比較弱,顯然還不適合用來進行濾波、特徵提取等等一些更為復雜的應用。我個人的觀點是,當你要實現這些「高級」的演算法的時候,好吧,把它交給MATLAB去完成。但是,如果你面對的只是一個通常的不要求很復雜演算法的圖像處理任務,那麼,Python圖像處理應該才是你的最佳搭檔。

閱讀全文

與醫學圖像插值python相關的資料

熱點內容
命令與征服叛逆者修改器 瀏覽:244
怎麼用ios玩安卓全民槍戰 瀏覽:666
程序員入行前後的頭發 瀏覽:709
嵌入式圖像演算法 瀏覽:327
伺服器如何訪問伺服器失敗 瀏覽:873
android進度球 瀏覽:999
Linux造成xfs文件夾 瀏覽:455
華為手機怎麼修改wifi加密類型 瀏覽:248
伺服器封口是什麼意思 瀏覽:741
有限元分析是演算法嗎 瀏覽:901
空氣壓縮機性能曲線 瀏覽:20
京城程序員2019 瀏覽:403
android新系統 瀏覽:510
安卓80有什麼bug 瀏覽:678
如何做單機伺服器 瀏覽:943
校訊通查成績怎麼顯示伺服器異常 瀏覽:882
冰箱壓縮機工作壓力是多少 瀏覽:408
程序員20多平米租房 瀏覽:451
電工知識用線的演算法 瀏覽:338
極光推送php伺服器端 瀏覽:5