導航:首頁 > 編程語言 > java二叉樹查找

java二叉樹查找

發布時間:2023-09-04 03:50:57

『壹』 寫一個java層次遍歷二叉樹,簡單點就可以,我要的是代碼,不是純文字說明

public class BinaryNode {
Object element;
BinaryNode left;
BinaryNode right;

}

import java.util.*;

public class Queue {

protected LinkedList list;

// Postcondition: this Queue object has been initialized.
public Queue() {

list = new LinkedList();

} // default constructor

// Postcondition: the number of elements in this Queue object has been
// returned.
public int size() {

return list.size();

} // method size

// Postcondition: true has been returned if this Queue object has no
// elements. Otherwise, false has been returned.
public boolean isEmpty() {

return list.isEmpty();

} // method isEmpty

// Postconditon: A of element has been inserted at the back of this
// Queue object. The averageTime (n) is constant and
// worstTime (n) is O (n).
public void enqueue(Object element) {

list.addLast(element);

} // method enqueue

// Precondition: this Queue object is not empty. Otherwise,
// NoSuchElementException will be thrown.
// Postcondition: The element that was at the front of this Queue object -
// just before this method was called -- has been removed
// from this Queue object and returned.
public Object dequeue() {

return list.removeFirst();

} // method dequeue

// Precondition: this Queue object is not empty. Otherwise,
// NoSuchElementException will be thrown.
// Postcondition: the element at index 0 in this Queue object has been
// returned.
public Object front() {

return list.getFirst();

} // method front

} // Queue class

import java.io.IOException;

public class BinaryTree {
BinaryNode root;

public BinaryTree() {
super();
// TODO 自動生成構造函數存根
root=this.createPre();
}

public BinaryNode createPre()
//按照先序遍歷的輸入方法,建立二叉樹
{
BinaryNode t=null;
char ch;
try {
ch = (char)System.in.read();

if(ch==' ')
t=null;
else
{
t=new BinaryNode();
t.element=(Object)ch;
t.left=createPre();
t.right=createPre();
}
} catch (IOException e) {
// TODO 自動生成 catch 塊
e.printStackTrace();
}
return t;
}

public void inOrder()
{
this.inOrder(root);
}

public void inOrder(BinaryNode t)
//中序遍歷二叉樹
{
if(t!=null)
{
inOrder(t.left);
System.out.print(t.element);
inOrder(t.right);
}
}

public void postOrder()
{
this.postOrder(root);
}

public void postOrder(BinaryNode t)
//後序遍歷二叉樹
{
if(t!=null)
{
postOrder(t.left);
System.out.print(t.element);
postOrder(t.right);
}
}

public void preOrder()
{
this.preOrder(root);
}
public void preOrder(BinaryNode t)
//前序遍歷二叉樹
{
if(t!=null)
{
System.out.print(t.element);
preOrder(t.left);
preOrder(t.right);
}
}

public void breadthFirst()
{
Queue treeQueue=new Queue();
BinaryNode p;
if(root!=null)
treeQueue.enqueue(root);
while(!treeQueue.isEmpty())
{
System.out.print(((BinaryNode)(treeQueue.front())).element);
p=(BinaryNode)treeQueue.dequeue();
if(p.left!=null)
treeQueue.enqueue(p.left);
if(p.right!=null)
treeQueue.enqueue(p.right);
}
}
}

public class BinaryTreeTest {

/**
* @param args
*/
public static void main(String[] args) {
// TODO 自動生成方法存根
BinaryTree tree = new BinaryTree();

System.out.println("先序遍歷:");
tree.preOrder();
System.out.println();

System.out.println("中序遍歷:");
tree.inOrder();
System.out.println();

System.out.println("後序遍歷:");
tree.postOrder();
System.out.println();

System.out.println("層次遍歷:");
tree.breadthFirst();
System.out.println();
}

}

『貳』 如何用Java的方式設計一個後序線索二叉樹的方法

在Java中,你可以定義一哪激弊個類來表示後序線索二叉樹,其中包含有頭節點、尾節點和當前節點指針。你可以使用遞歸或迭代方法遍歷整棵樹,並創建線索,即存儲前驅和後繼節點的指針。當訪問到葉子節點時,需要將尾節點的指針指向它,尾節點鉛隱的指李族針則指向頭節點
// 定

『叄』 用java怎麼構造一個二叉樹呢

二叉樹的相關操作,包括創建,中序、先序、後序(遞歸和非遞歸),其中重點的是java在先序創建二叉樹和後序非遞歸遍歷的的實現。
package com.algorithm.tree;

import java.io.File;
import java.io.FileNotFoundException;
import java.util.Queue;
import java.util.Scanner;
import java.util.Stack;
import java.util.concurrent.LinkedBlockingQueue;

public class Tree<T> {

private Node<T> root;

public Tree() {
}

public Tree(Node<T> root) {
this.root = root;
}

//創建二叉樹
public void buildTree() {

Scanner scn = null;
try {
scn = new Scanner(new File("input.txt"));
} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
root = createTree(root,scn);
}
//先序遍歷創建二叉樹
private Node<T> createTree(Node<T> node,Scanner scn) {

String temp = scn.next();

if (temp.trim().equals("#")) {
return null;
} else {
node = new Node<T>((T)temp);
node.setLeft(createTree(node.getLeft(), scn));
node.setRight(createTree(node.getRight(), scn));
return node;
}

}

//中序遍歷(遞歸)
public void inOrderTraverse() {
inOrderTraverse(root);
}

public void inOrderTraverse(Node<T> node) {
if (node != null) {
inOrderTraverse(node.getLeft());
System.out.println(node.getValue());
inOrderTraverse(node.getRight());
}
}

//中序遍歷(非遞歸)
public void nrInOrderTraverse() {

Stack<Node<T>> stack = new Stack<Node<T>>();
Node<T> node = root;
while (node != null || !stack.isEmpty()) {
while (node != null) {
stack.push(node);
node = node.getLeft();
}
node = stack.pop();
System.out.println(node.getValue());
node = node.getRight();

}

}
//先序遍歷(遞歸)
public void preOrderTraverse() {
preOrderTraverse(root);
}

public void preOrderTraverse(Node<T> node) {
if (node != null) {
System.out.println(node.getValue());
preOrderTraverse(node.getLeft());
preOrderTraverse(node.getRight());
}
}

//先序遍歷(非遞歸)
public void nrPreOrderTraverse() {

Stack<Node<T>> stack = new Stack<Node<T>>();
Node<T> node = root;

while (node != null || !stack.isEmpty()) {

while (node != null) {
System.out.println(node.getValue());
stack.push(node);
node = node.getLeft();
}
node = stack.pop();
node = node.getRight();
}

}

//後序遍歷(遞歸)
public void postOrderTraverse() {
postOrderTraverse(root);
}

public void postOrderTraverse(Node<T> node) {
if (node != null) {
postOrderTraverse(node.getLeft());
postOrderTraverse(node.getRight());
System.out.println(node.getValue());
}
}

//後續遍歷(非遞歸)
public void nrPostOrderTraverse() {

Stack<Node<T>> stack = new Stack<Node<T>>();
Node<T> node = root;
Node<T> preNode = null;//表示最近一次訪問的節點

while (node != null || !stack.isEmpty()) {

while (node != null) {
stack.push(node);
node = node.getLeft();
}

node = stack.peek();

if (node.getRight() == null || node.getRight() == preNode) {
System.out.println(node.getValue());
node = stack.pop();
preNode = node;
node = null;
} else {
node = node.getRight();
}

}

}

//按層次遍歷
public void levelTraverse() {
levelTraverse(root);
}

public void levelTraverse(Node<T> node) {

Queue<Node<T>> queue = new LinkedBlockingQueue<Node<T>>();
queue.add(node);
while (!queue.isEmpty()) {

Node<T> temp = queue.poll();
if (temp != null) {
System.out.println(temp.getValue());
queue.add(temp.getLeft());
queue.add(temp.getRight());
}

}

}

}

//樹的節點

class Node<T> {

private Node<T> left;
private Node<T> right;
private T value;

public Node() {
}
public Node(Node<T> left,Node<T> right,T value) {
this.left = left;
this.right = right;
this.value = value;
}

public Node(T value) {
this(null,null,value);
}
public Node<T> getLeft() {
return left;
}
public void setLeft(Node<T> left) {
this.left = left;
}
public Node<T> getRight() {
return right;
}
public void setRight(Node<T> right) {
this.right = right;
}
public T getValue() {
return value;
}
public void setValue(T value) {
this.value = value;
}

}
測試代碼:
package com.algorithm.tree;

public class TreeTest {

/**
* @param args
*/
public static void main(String[] args) {
Tree<Integer> tree = new Tree<Integer>();
tree.buildTree();
System.out.println("中序遍歷");
tree.inOrderTraverse();
tree.nrInOrderTraverse();
System.out.println("後續遍歷");
//tree.nrPostOrderTraverse();
tree.postOrderTraverse();
tree.nrPostOrderTraverse();
System.out.println("先序遍歷");
tree.preOrderTraverse();
tree.nrPreOrderTraverse();

//
}

}

『肆』 java 構建二叉樹

首先我想問為什麼要用LinkedList 來建立二叉樹呢? LinkedList 是線性表,
樹是樹形的, 似乎不太合適。

其實也可以用數組完成,而且效率更高.
關鍵是我覺得你這個輸入本身就是一個二叉樹啊,
String input = "ABCDE F G";
節點編號從0到8. 層次遍歷的話:
對於節點i.
leftChild = input.charAt(2*i+1); //做子樹
rightChild = input.charAt(2*i+2);//右子樹

如果你要將帶有節點信息的樹存到LinkedList裡面, 先建立一個節點類:
class Node{
public char cValue;
public Node leftChild;
public Node rightChild;
public Node(v){
this.cValue = v;
}
}

然後遍歷input,建立各個節點對象.
LinkedList tree = new LinkedList();
for(int i=0;i< input.length;i++)
LinkedList.add(new Node(input.charAt(i)));

然後為各個節點設置左右子樹:
for(int i=0;i<input.length;i++){
((Node)tree.get(i)).leftChild = (Node)tree.get(2*i+1);
((Node)tree.get(i)).rightChild = (Node)tree.get(2*i+2);

}

這樣LinkedList 就存儲了整個二叉樹. 而第0個元素就是樹根,思路大體是這樣吧。

『伍』 java實現二叉樹的問題

/**
* 二叉樹測試二叉樹順序存儲在treeLine中,遞歸前序創建二叉樹。另外還有能
* 夠前序、中序、後序、按層遍歷二叉樹的方法以及一個返回遍歷結果asString的
* 方法。
*/

public class BitTree {
public static Node2 root;
public static String asString;

//事先存入的數組,符號#表示二叉樹結束。
public static final char[] treeLine = {'a','b','c','d','e','f','g',' ',' ','j',' ',' ','i','#'};

//用於標志二叉樹節點在數組中的存儲位置,以便在創建二叉樹時能夠找到節點對應的數據。
static int index;

//構造函數
public BitTree() {
System.out.print("測試二叉樹的順序表示為:");
System.out.println(treeLine);
this.index = 0;
root = this.setup(root);
}

//創建二叉樹的遞歸程序
private Node2 setup(Node2 current) {
if (index >= treeLine.length) return current;
if (treeLine[index] == '#') return current;
if (treeLine[index] == ' ') return current;
current = new Node2(treeLine[index]);
index = index * 2 + 1;
current.left = setup(current.left);
index ++;
current.right = setup(current.right);
index = index / 2 - 1;
return current;
}

//二叉樹是否為空。
public boolean isEmpty() {
if (root == null) return true;
return false;
}

//返回遍歷二叉樹所得到的字元串。
public String toString(int type) {
if (type == 0) {
asString = "前序遍歷:\t";
this.front(root);
}
if (type == 1) {
asString = "中序遍歷:\t";
this.middle(root);
}
if (type == 2) {
asString = "後序遍歷:\t";
this.rear(root);
}
if (type == 3) {
asString = "按層遍歷:\t";
this.level(root);
}
return asString;
}

//前序遍歷二叉樹的循環演算法,每到一個結點先輸出,再壓棧,然後訪問它的左子樹,
//出棧,訪問其右子樹,然後該次循環結束。
private void front(Node2 current) {
StackL stack = new StackL((Object)current);
do {
if (current == null) {
current = (Node2)stack.pop();
current = current.right;
} else {
asString += current.ch;
current = current.left;
}
if (!(current == null)) stack.push((Object)current);
} while (!(stack.isEmpty()));
}

//中序遍歷二叉樹
private void middle(Node2 current) {
if (current == null) return;
middle(current.left);
asString += current.ch;
middle(current.right);
}

//後序遍歷二叉樹的遞歸演算法
private void rear(Node2 current) {
if (current == null) return;
rear(current.left);
rear(current.right);
asString += current.ch;
}

}

/**
* 二叉樹所使用的節點類。包括一個值域兩個鏈域
*/

public class Node2 {
char ch;
Node2 left;
Node2 right;

//構造函數
public Node2(char c) {
this.ch = c;
this.left = null;
this.right = null;
}

//設置節點的值
public void setChar(char c) {
this.ch = c;
}

//返回節點的值
public char getChar() {
return ch;
}

//設置節點的左孩子
public void setLeft(Node2 left) {
this.left = left;
}

//設置節點的右孩子
public void setRight (Node2 right) {
this.right = right;
}

//如果是葉節點返回true
public boolean isLeaf() {
if ((this.left == null) && (this.right == null)) return true;
return false;
}
}

一個作業題,裡面有你要的東西。
主函數自己寫吧。當然其它地方也有要改的。

『陸』 如何用java實現二叉樹

import java.util.List;
import java.util.LinkedList;

public class Bintrees {
private int[] array = {1, 2, 3, 4, 5, 6, 7, 8, 9};
private static List<Node> nodeList = null;

private static class Node {
Node leftChild;
Node rightChild;
int data;

Node(int newData) {
leftChild = null;
rightChild = null;
data = newData;
}
}

// 創建二叉樹
public void createBintree() {
nodeList = new LinkedList<Node>();

// 將數組的值轉換為node
for (int nodeIndex = 0; nodeIndex < array.length; nodeIndex++) {
nodeList.add(new Node(array[nodeIndex]));
}

// 對除最後一個父節點按照父節點和孩子節點的數字關系建立二叉樹
for (int parentIndex = 0; parentIndex < array.length / 2 - 1; parentIndex++) {
nodeList.get(parentIndex).leftChild = nodeList.get(parentIndex * 2 + 1);
nodeList.get(parentIndex).rightChild = nodeList.get(parentIndex * 2 + 2);
}

// 最後一個父節點
int lastParentIndex = array.length / 2 - 1;

// 左孩子
nodeList.get(lastParentIndex).leftChild = nodeList.get(lastParentIndex * 2 + 1);

// 如果為奇數,建立右孩子
if (array.length % 2 == 1) {
nodeList.get(lastParentIndex).rightChild = nodeList.get(lastParentIndex * 2 + 2);
}
}

// 前序遍歷
public static void preOrderTraverse(Node node) {
if (node == null) {
return;
}
System.out.print(node.data + " ");
preOrderTraverse(node.leftChild);
preOrderTraverse(node.rightChild);
}

// 中序遍歷
public static void inOrderTraverse(Node node) {
if (node == null) {
return;
}

inOrderTraverse(node.leftChild);
System.out.print(node.data + " ");
inOrderTraverse(node.rightChild);
}

// 後序遍歷
public static void postOrderTraverse(Node node) {
if (node == null) {
return;
}

postOrderTraverse(node.leftChild);
postOrderTraverse(node.rightChild);
System.out.print(node.data + " ");
}

public static void main(String[] args) {
Bintrees binTree = new Bintrees();
binTree.createBintree();
Node root = nodeList.get(0);

System.out.println("前序遍歷:");
preOrderTraverse(root);
System.out.println();

System.out.println("中序遍歷:");
inOrderTraverse(root);
System.out.println();

System.out.println("後序遍歷:");
postOrderTraverse(root);
}
}

輸出結果:
前序遍歷:
1 2 4 8 9 5 3 6 7
中序遍歷:
8 4 9 2 5 1 6 3 7
後序遍歷:
8 9 4 5 2 6 7 3 1

『柒』 java如何求二叉樹中任意兩個節點的最大距離

兩個節點的距離的定義是這兩個節點間邊的個數,
比如某個孩子節點和父節點間的距離是1,和相鄰兄弟節點間的距離是2,
優化時間空間復雜度。
代碼:
void MaxDistance(Tree* root,int &deep,int & maxdis)
{
if(root)
{
deep=0;
maxdis=0;
}
int l_deep,l_maxdis;
int r_deep,r_maxdis;
if(root->left!=null)
MaxDistance(root->left,l_deep,l_maxdis);
if(root->right!=null)
MaxDistance(root->right,r_deep,r_maxdis);
deep=(l_deep>r_deep?l_deep:r_deep)+1;
maxdis=l_maxdis>r_maxdis?l_maxdis:r_maxdis;
maxdis=(l_deep+r_deep)>maxdis?l_deep+r_deep:maxdis;
}
}

『捌』 Java數據結構二叉樹深度遞歸調用演算法求內部演算法過程詳解

二叉樹
1
2 3
4 5 6 7
這個二叉樹的深度是3,樹的深度是最大結點所在的層,這里是3.

應該計算所有結點層數,選擇最大的那個。

根據上面的二叉樹代碼,遞歸過程是:

f(1)=f(2)+1 > f(3) +1 ? f(2) + 1 : f(3) +1

f(2) 跟f(3)計算類似上面,要計算左右結點,然後取大者

所以計算順序是f(4.left) = 0, f(4.right) = 0

f(4) = f(4.right) + 1 = 1

然後計算f(5.left) = 0,f(5.right) = 0

f(5) = f(5.right) + 1 =1

f(2) = f(5) + 1 =2

f(1.left) 計算完畢,計算f(1.right) f(3) 跟計算f(2)的過程一樣。

得到f(3) = f(7) +1 = 2

f(1) = f(3) + 1 =3

if(depleft>depright){
returndepleft+1;
}else{
returndepright+1;
}

只有left大於right的時候採取left +1,相等是取right

『玖』 我想要找一份關於java數據結構二叉樹的實例詳解(所有基本操作,包括二叉樹的高度和節點總數)

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define Max 20 //結點的最大個數
typedef struct node{
char data;
struct node *lchild,*rchild;
}BinTNode; //自定義二叉樹的結點類型
typedef BinTNode *BinTree; //定義二叉樹的指針
int NodeNum,leaf; //NodeNum為結點數,leaf為葉子數
//基於先序遍歷演算法創建二叉樹
//要求輸入先序序列,其中加入虛結點"#"以示空指針的位置
BinTree CreatBinTree(void){
BinTree T;
char ch;
if((ch=getchar())=='#')
return(NULL); //讀入#,返回空指針
else{
T=(BinTNode *)malloc(sizeof(BinTNode)); //生成結點
T->data=ch;
T->lchild=CreatBinTree(); //構造左子樹
T->rchild=CreatBinTree(); //構造右子樹
return(T);
}
}
//先序遍歷
void Preorder(BinTree T){
if(T){
printf("%c",T->data); //訪問結點
Preorder(T->lchild); //先序遍歷左子樹
Preorder(T->rchild); //先序遍歷右子樹
}
}
//中序遍歷
void Inorder(BinTree T){
if(T){
Inorder(T->lchild); //中序遍歷左子樹
printf("%c",T->data); //訪問結點
Inorder(T->rchild); //中序遍歷右子樹
}
}
//後序遍歷
void Postorder(BinTree T){
if(T){
Postorder(T->lchild); //後序遍歷左子樹
Postorder(T->rchild); //後序遍歷右子樹
printf("%c",T->data); //訪問結點
}
}
//採用後序遍歷求二叉樹的深度、結點數及葉子數的遞歸演算法
int TreeDepth(BinTree T){
int hl,hr,max;
if(T){
hl=TreeDepth(T->lchild); //求左深度
hr=TreeDepth(T->rchild); //求右深度
max=hl>hr? hl:hr; //取左右深度的最大值
NodeNum=NodeNum+1; //求結點數
if(hl==0&&hr==0) leaf=leaf+1; //若左右深度為0,即為葉子。
return(max+1);
}
else return(0);
}
//主函數
void main(){
BinTree root;
int i,depth;
printf("\n");
printf("Creat Bin_Tree; Input preorder:"); //輸入完全二叉樹的先序序列,
// 用#代表虛結點,如ABD###CE##F##
root=CreatBinTree(); //創建二叉樹,返回根結點
do{ //從菜單中選擇遍歷方式,輸入序號。
printf("\t********** select ************\n");
printf("\t1: Preorder Traversal\n");
printf("\t2: Iorder Traversal\n");
printf("\t3: Postorder traversal\n");
printf("\t4: PostTreeDepth,Node number,Leaf number\n");
printf("\t0: Exit\n");
printf("\t*******************************\n");
scanf("%d",&i); //輸入菜單序號(0-4)
switch (i){
case 1: printf("Print Bin_tree Preorder: ");
Preorder(root); //先序遍歷
break;
case 2: printf("Print Bin_Tree Inorder: ");
Inorder(root); //中序遍歷
break;
case 3: printf("Print Bin_Tree Postorder: ");
Postorder(root); //後序遍歷
break;
case 4: depth=TreeDepth(root); //求樹的深度及葉子數
printf("BinTree Depth=%d BinTree Node number=%d",depth,NodeNum);
printf(" BinTree Leaf number=%d",leaf);
break;
case 5: printf("LevePrint Bin_Tree: ");
Levelorder(root); //按層次遍歷
break;
default: exit(1);
}
printf("\n");
}while(i!=0);
}
//按層遍歷
Levelorder( BinTNode *root){
BinTNode * q[Max]; //定義BinTNode類型的隊列 用於存放節點 隊列長最大為20個元素
int front=0,rear=0; //初始化隊列為空
BinTNode *p; //臨時節點指針
if(root!=NULL){ //將根節點進隊
rear=(rear+1)%Max;
q[rear]=root;
}
while(front!=rear){
front=(front+1)%Max;
p=q[front]; //刪除隊首的元素 讓兩個節點(左右節點)孤立
printf("%c",p->data); //輸出隊列首元素的值
if(p->left!=null){ //如果存在左孩子節點,則左孩子節點進入隊列
rear=(rear+1)%Max;
q[rear]=p->left;
}
if(p->right!=null){ //如果存在右孩子節點,則右孩子節點進入隊列
rear=(rear+1)%Max;
q[rear]=p->right;
}
}
}

閱讀全文

與java二叉樹查找相關的資料

熱點內容
大型雲伺服器有哪些 瀏覽:466
解壓版三國街機 瀏覽:423
去中心化app裡麵包含什麼 瀏覽:948
密鑰安裝命令行 瀏覽:505
文獻編譯英文 瀏覽:659
php調用瀏覽器 瀏覽:527
數控車床編程初學實例 瀏覽:949
cad中篩選命令是什麼 瀏覽:800
數控銑床法蘭克編程 瀏覽:330
怎麼樣分解壓縮包圖標 瀏覽:619
php兩年工作經驗簡歷 瀏覽:765
怎麼提前解壓房貸 瀏覽:699
反詐宣傳app哪裡可以拿到用戶資料 瀏覽:856
華為交換機命令配置 瀏覽:12
電機pid演算法實例c語言 瀏覽:973
安裝ue5未找到金屬編譯器 瀏覽:965
l1壓縮性骨折微創手術 瀏覽:616
看電腦配置命令 瀏覽:109
單片機調用db數值偏移量 瀏覽:447
賓士smart車型壓縮機功率 瀏覽:529