⑴ python是個什麼東西
Python是一種跨平台的計算機程序設計語言。是一個高層次的結合了解釋性、編譯性、互動性和面向對象的腳本語言。最初被設計用於編寫自動化腳本(shell),隨著版本的不斷更新和語言新功能的添加,越多被用於獨立的、大型項目的開發。
Python的創始人為荷蘭人吉多·范羅蘇姆(GuidovanRossum)。1989年聖誕節期間,在阿姆斯特丹,Guido為了打發聖誕節的無趣,決心開發一個新的腳本解釋程序,作為ABC語言的一種繼承。
之所以選中Python(大蟒蛇的意思)作為該編程語言的名字,是取自英國20世紀70年代首播的電視喜劇《蒙提.派森的飛行馬戲團》(MontyPython'sFlyingCircus)。
(1)itkpython擴展閱讀:
python中文就是蟒蛇的意思。在計算機中,它是一種編程語言。Python(英語發音:/ˈpaɪθən/),是一種面向對象、解釋型計算機程序設計語言,由GuidovanRossum於1989年底發明,第一個公開發行版發行於1991年。Python語法簡潔而清晰,具有豐富和強大的類庫。
它常被昵稱為膠水語言,它能夠把用其他語言製作的各種模塊(尤其是C/C++)很輕松地聯結在一起。常見的一種應用情形是,使用Python快速生成程序的原型(有時甚至是程序的最終界面),然後對其中有特別要求的部分,用更合適的語言改寫。
比如3D游戲中的圖形渲染模塊,性能要求特別高,就可以用C++重寫。1發展歷程編輯自從20世紀90年代初Python語言誕生至今,它逐漸被廣泛應用於處理系統管理任務和Web編程。Python已經成為最受歡迎的程序設計語言之一。
網路-Python
⑵ python是什麼樣的編程語言
Python由荷蘭數學和計算機科學研究學會的Guido van Rossum於1990 年代初設計,作為一門叫做ABC語言的替代品。 Python提供了高效的高級數據結構,還能簡單有效地面向對象編程。Python語法和動態類型,以及解釋型語言的本質,使它成為多數平台上寫腳本和快速開發應用的編程語言, 隨著版本的不斷更新和語言新功能的添加,逐漸被用於獨立的、大型項目的開發。
Python解釋器易於擴展,可以使用C或C++(或者其他可以通過C調用的語言)擴展新的功能和數據類型。 Python 也可用於可定製化軟體中的擴展程序語言。Python豐富的標准庫,提供了適用於各個主要系統平台的源碼或機器碼。
由於Python語言的簡潔性、易讀性以及可擴展性,在國外用Python做科學計算的研究機構日益增多,一些知名大學已經採用Python來教授程序設計課程。例如卡耐基梅隆大學的編程基礎、麻省理工學院的計算機科學及編程導論就使用Python語言講授。眾多開源的科學計算軟體包都提供了Python的調用介面,例如著名的計算機視覺庫OpenCV、三維可視化庫VTK、醫學圖像處理庫ITK。而Python專用的科學計算擴展庫就更多了,例如如下3個十分經典的科學計算擴展庫:NumPy、SciPy和matplotlib,它們分別為Python提供了快速數組處理、數值運算以及繪圖功能。因此Python語言及其眾多的擴展庫所構成的開發環境十分適合工程技術、科研人員處理實驗數據、製作圖表,甚至開發科學計算應用程序。2018年3月,該語言作者在郵件列表上宣布Python 2.7將於2020年1月1日終止支持。用戶如果想要在這個日期之後繼續得到與Python 2.7有關的支持,則需要付費給商業供應商。
⑶ python是什麼
python 中文就是蟒蛇的意思。
在計算機中,它是一種編程語言。
Python(英語發音:/ˈpaɪθən/), 是一種面向對象、解釋型計算機程序設計語言,由Guido van Rossum於1989年底發明,第一個公開發行版發行於1991年。Python語法簡潔而清晰,具有豐富和強大的類庫。它常被昵稱為膠水語言,它能夠把用其他語言製作的各種模塊(尤其是C/C++)很輕松地聯結在一起。常見的一種應用情形是,使用Python快速生成程序的原型(有時甚至是程序的最終界面),然後對其中有特別要求的部分,用更合適的語言改寫,比如3D游戲中的圖形渲染模塊,性能要求特別高,就可以用C++重寫。
1發展歷程編輯
自從20世紀90年代初Python語言誕生至今,它逐漸被廣泛應用於處理系統管理任務和Web編程。孫寬Python[1] 已經成為最受歡迎的程序設計語言之一。2011年1月,它被TIOBE編程語言排行榜評為2010年度語言。自從2004年以後,python的使用率是呈線性增長[2] 。
由於Python語言的簡潔、易讀以及可擴展性,在國外用Python做科學計算的研究機構日益增多,一些知名大學
已經採用Python教授程序設計課程。例如卡耐基梅隆大學的編程基礎和麻省理工學院的計算機科學及編程導論就使用Python語言講授。眾多開源的科學
計算軟體包都提供了Python的調用介面,
例如著名的計算機視覺庫OpenCV、三維可視化庫VTK、醫學圖像處理庫ITK。而Python專用的科學計算擴展庫就更多了,例如如下3個十分經典的
科學計算擴展庫:NumPy、SciPy和則消亮matplotlib,它們分別為Python提橋脊供了快速數組處理、數值運算以及繪圖功能。因此Python語
言及其眾多的擴展庫所構成的開發環境十分適合工程技術、科研人員處理實驗數據、製作圖表,甚至開發科學計算應用程序。
說起科學計算,首先會被提到的可能是MATLAB。然而除了MATLAB的一些專業性很強的工具箱還無法替代之外,MATLAB的大部分常用功能都可以在Python世界中找到相應的擴展庫。和MATLAB相比,用Python做科學計算有如下優點:
● 首先,MATLAB是一款商用軟體,並且價格不菲。而Python完全免費,眾多開源的科學計算庫都提供了Python的調用介面。用戶可以在任何計算機上免費安裝Python及其絕大多數擴展庫。
● 其次,與MATLAB相比,Python是一門更易學、更嚴謹的程序設計語言。它能讓用戶編寫出更易讀、易維護的代碼。
● 最後,MATLAB主要專注於工程和科學計算。然而即使在計算領域,也經常會遇到文件管理、界面設計、網路通信等各種需求。而Python有著豐富的擴展庫,可以輕易完成各種高級任務,開發者可以用Python實現完整應用程序所需的各種功能。
2產生
Python的創始人為Guido van Rossum。1989年聖誕節期間,在阿姆斯特丹,Guido為了打發聖誕節的無趣,決心開發一個新的腳本解釋程序,做為ABC 語言的一種繼承。之所以選中Python(大蟒蛇的意思)作為程序的名字,是因為他是一個叫Monty Python的喜劇團體的愛好者。
ABC是由Guido參加設計的一種教學語言。就Guido本人看來,ABC
這種語言非常優美和強大,是專門為非專業程序員設計的。但是ABC語言並沒有成功,究其原因,Guido 認為是非開放造成的。Guido
決心在Python 中避免這一錯誤。同時,他還想實現在ABC 中閃現過但未曾實現的東西。
就這樣,Python在Guido手中誕生了。可以說,Python是從ABC發展起來,主要受到了Mola-3(另一種相當優美且強大的語言,為小型團體所設計的)的影響。並且結合了Unix shell和C的習慣。
3風格
Python在設計上堅持了清晰劃一的風格,這使得Python成為一門易讀、易維護,並且被大量用戶所歡迎的、用途廣泛的語言。
設計者開發時總的指導思想是,對於一個特定的問題,只要有一種最好的方法來解決就好了。這在由Tim
Peters寫的Python格言(稱為The Zen of Python)裡面表述為:There should be one-- and
preferably only one --obvious way to do it. 這正好和Perl語言(另一種功能類似的高級動態語言)的中心思想TMTOWTDI(There's More Than One Way To Do It)完全相反。
Python的作者有意的設計限制性很強的語法,使得不好的編程習慣(例如if語句的下一行不向右縮進)都不能通過編譯。其中很重要的一項就是Python的縮進規則。
一個和其他大多數語言(如C)的區別就是,一個模塊的界限,完全是由每行的首字元在這一行的位置來決定的(而C語言
是用一對花括弧{}來明確的定出模塊的邊界的,與字元的位置毫無關系)。這一點曾經引起過爭議。因為自從C這類的語言誕生後,語言的語法含義與字元的排列
方式分離開來,曾經被認為是一種程序語言的進步。不過不可否認的是,通過強製程序員們縮進(包括if,for和函數定義等所有需要使用模塊的地方),Python確實使得程序更加清晰和美觀。
4設計定位
Python
的設計哲學是「優雅」、「明確」、「簡單」。因此,Perl語言中「總是有多種方法來做同一件事」的理念在Python開發者中通常是難以忍受的。
Python開發者的哲學是「用一種方法,最好是只有一種方法來做一件事」。在設計Python語言時,如果面臨多種選擇,Python開發者一般會拒絕
花俏的語法,而選擇明確的沒有或者很少有歧義的語法。由於這種設計觀念的差異,Python源代碼通常被認為比Perl具備更好的可讀性,並且能夠支撐大
規模的軟體開發。這些准則被稱為Python格言。在Python解釋器內運行import this可以獲得完整的列表。
Python開發人員盡量避開不成熟或者不重要的優化。一些針對非重要部位的加快運行速度的補丁通常不會被合並到
Python內。所以很多人認為Python很慢。不過,根據二八定律,大多數程序對速度要求不高。在某些對運行速度要求很高的情況,Python設計師
傾向於使用JIT技術,或者用使用C/C++語言改寫這部分程序。可用的JIT技術是PyPy。
Python是完全面向對象的語言。函數、模塊、數字、字元串都是對象。並且完全支持繼承、重載、派生、多繼承,有益於增強源代碼的復用性。Python支持重載運算符和動態類型。相對於Lisp這種傳統的函數式編程語言,Python對函數式設計只提供了有限的支持。有兩個標准庫(functools, itertools)提供了Haskell和Standard ML中久經考驗的函數式程序設計工具。
雖然Python可能被粗略地分類為「腳本語言」(script language),但實際上一些大規模軟體開發計劃例如Zope、Mnet及BitTorrent,Google也廣泛地使用它。Python的支持者較喜歡稱它為一種高級動態編程語言,原因是「腳本語言」泛指僅作簡單程序設計任務的語言,如shellscript、VBScript等只能處理簡單任務的編程語言,並不能與Python相提並論。
Python本身被設計為可擴充的。並非所有的特性和功能都集成到語言核心。Python提供了豐富的API和
工具,以便程序員能夠輕松地使用C語言、C++、Cython來編寫擴充模塊。Python編譯器本身也可以被集成到其它需要腳本語言的程序內。因此,很
多人還把Python作為一種「膠水語言」(glue
language)使用。使用Python將其他語言編寫的程序進行集成和封裝。在Google內部的很多項目,例如Google
Engine使用C++編寫性能要求極高的部分,然後用Python或Java/Go調用相應的模塊。《Python技術手冊》的作者馬特利(Alex
Martelli)說:「這很難講,不過,2004 年,Python 已在 Google 內部使用,Google 召募許多 Python
高手,但在這之前就已決定使用Python,他們的目的是 Python where we can, C++ where we
must,在操控硬體的場合使用 C++,在快速開發時候使用 Python。」
⑷ python能幹什麼
學完Python之後,可以從事以下工作崗位:
1、web開發:Python擁有非常完善的與web伺服器進行交互的庫,以及大量免費前端網頁模板,有非常優秀而且成熟的diangoWEB框架,功能齊全。
2、Linux運維:通過shell腳本去實現自動化運維,但是編程能力較弱,可以使用功能的庫很少,而Python作為膠水語言,可以很方便的與其他想結合,對各類工具進行二次開發,形成一套自己的運維管理系統。
3、游戲開發:在游戲開發方面可能Python無法匹敵C++,但是由於Python腳本化的優點,類似於游戲劇本、游戲玩法邏輯等這種非常靈活的設計上,修改起來非常方便。如果用於開發一款游戲程序,Python是非常具有優勢的。
4、網路爬蟲:在爬蟲方面,Python可以說是獨領風騷了,Python具有非常豐富的庫去網頁文檔的介面api以及後期網頁文檔的快速處理。
5、桌面軟體:在Windows系統桌面開發領域,C++等語言應用十分廣泛,而Python可以實現與C++無縫對接,並且同時支持QT以及GTK。
6、數據分析:python作為一門工程性語言,對於數據處理的類庫是相當豐富的,比如有高性能的科學計算類庫NumPy和SciPy。
7、人工智慧:其實可以寫人工智慧語言有很多,為何Python是首先呢?因為Python是膠水語言,具有獨特優勢才具有如此好的效果,主要使用python是因為CPython和底層原因的融合使得開發起來更加方便。
更多技術干貨,可關註:
⑸ python圖像處理庫 哪個好 知乎
1.scikit-image
scikit-image是一個開源的Python包,適用於numpy數組。它實現了用於研究,教育和工業應用的演算法和實用工具。即使是那些剛接觸Python生態系統的人,它也是一個相當簡單直接的庫。此代碼是由活躍的志願者社區編寫的,具有高質量和同行評審的性質。
2.Numpy
Numpy是Python編程的核心庫之一,並為數組提供支持。圖像本質上是包含數據點像素的標准Numpy數組。因此,我們可以通過使用基本的NumPy操作,例如切片、掩膜和花式索引,來修改圖像的像素值。可以使用skimage載入圖像並使用matplotlib顯示圖像。
3.Scipy
scipy是Python的另一個類似Numpy的核心科學模塊,可用於基本的圖像操作和處理任務。特別是子模塊scipy.ndimage,提供了在n維NumPy數組上操作的函數。該包目前包括線性和非線性濾波,二值形態學,B樣條插值和對象測量等功能函數。
4. PIL/Pillow
PIL是Python編程語言的一個免費庫,它支持打開、操作和保存許多不同的文件格式的圖像。然而,隨著2009年的最後一次發布,它的開發停滯不前。但幸運的是還有Pillow,一個PIL積極開發的且更容易安裝的分支,它能運行在所有主要的操作系統,並支持Python3。這個庫包含了基本的圖像處理功能,包括點運算、使用一組內置卷積核的濾波和色彩空間的轉換。
5.OpenCV-Python
OpenCV是計算機視覺應用中應用最廣泛的庫之一
。OpenCV-Python是OpenCV的python版API。OpenCV-Python的優點不只有高效,這源於它的內部組成是用C/C++編寫的,而且它還容易編寫和部署。這使得它成為執行計算密集型計算機視覺程序的一個很好的選擇。
6.SimpleCV
SimpleCV也是一個用於構建計算機視覺應用程序的開源框架。有了它,你就可以訪問幾個高性能的計算機視覺庫,如OpenCV,而且不需要先學習了解位深度、文件格式、顏色空間等。它的學習曲線大大小於OpenCV,正如它們的口號所說「計算機視覺變得簡單」。
7.Mahotas
Mahotas是另一個計算機視覺和圖像處理的Python庫。它包括了傳統的圖像處理功能例如濾波和形態學操作以及更現代的計算機視覺功能用於特徵計算,包括興趣點檢測和局部描述符。該介面是Python語言,適合於快速開發,但是演算法是用C語言實現的,並根據速度進行了調優。Mahotas庫速度快,代碼簡潔,甚至具有最小的依賴性。
8.SimpleITK
ITK或者Insight Segmentation and Registration
Toolkit是一個開源的跨平台系統,為開發人員提供了一套廣泛的圖像分析軟體工具
。其中,SimpleITK是建立在ITK之上的簡化層,旨在促進其在快速原型設計、教育、解釋語言中的應用。SimpleITK是一個圖像分析工具包,包含大量支持一般過濾操作、圖像分割和匹配的組件。SimpleITK本身是用C++寫的,但是對於包括Python以內的大部分編程語言都是可用的。
9.pgmagick
pgmagick是GraphicsMagick庫的一個基於python的包裝。GraphicsMagick圖像處理系統有時被稱為圖像處理的瑞士軍刀。它提供了一個具有強大且高效的工具和庫集合,支持以88種主要格式讀取、寫入和操作圖像。
10.Pycairo
Pycairo是圖像處理庫cairo的一組Python捆綁。Cairo是一個用於繪制矢量圖形的2D圖形庫。矢量圖形很有趣,因為它們在調整大小或轉換時不會失去清晰度。Pycairo是cairo的一組綁定,可用於從Python調用cairo命令。
⑹ Python一般可以用來干什麼呢
Python實際上是一種編程語言,在許多領域中都有廣泛的應用,例如最熱門的大數據分析,人工智慧,Web開發等。
1989年聖誕節,阿姆斯特丹,為了度過無聊的聖誕節,年輕人Guido決定開發一種新的編程語言。 Python(Boa Constrictor)的名字是因為他是Monty Python喜劇小組的粉絲。你看,技術是如此隨意...
⑺ 10 個 Python 圖像編輯工具
以下提到的這些 Python 工具在編輯圖像、操作圖像底層數據方面都提供了簡單直接的方法。
-- Parul Pandey
當今的世界充滿了數據,而圖像數據就是其中很重要的一部分。但只有經過處理和分析,提高圖像的質量,從中提取出有效地信息,才能利用到這些圖像數據。
常見的圖像處理操作包括顯示圖像,基本的圖像操作,如裁剪、翻轉、旋轉;圖像的分割、分類、特徵提取;圖像恢復;以及圖像識別等等。Python 作為一種日益風靡的科學編程語言,是這些圖像處理操作的最佳選擇。同時,在 Python 生態當中也有很多可以免費使用的優秀的圖像處理工具。
下文將介紹 10 個可以用於圖像處理任務的 Python 庫,它們在編輯圖像、查看圖像底層數據方面都提供了簡單直接的方法。
scikit-image 是一個結合 NumPy 數組使用的開源 Python 工具,它實現了可用於研究、教育、工業應用的演算法和應用程序。即使是對於剛剛接觸 Python 生態圈的新手來說,它也是一個在使用上足夠簡單的庫。同時它的代碼質量也很高,因為它是由一個活躍的志願者社區開發的,並且通過了 同行評審(peer review)。
scikit-image 的 文檔 非常完善,其中包含了豐富的用例。
可以通過導入 skimage 使用,大部分的功能都可以在它的子模塊中找到。
圖像濾波(image filtering):
使用 match_template() 方法實現 模板匹配(template matching):
在 展示頁面 可以看到更多相關的例子。
NumPy 提供了對數組的支持,是 Python 編程的一個核心庫。圖像的本質其實也是一個包含像素數據點的標准 NumPy 數組,因此可以通過一些基本的 NumPy 操作(例如切片、 掩膜(mask)、 花式索引(fancy indexing)等),就可以從像素級別對圖像進行編輯。通過 NumPy 數組存儲的圖像也可以被 skimage 載入並使用 matplotlib 顯示。
在 NumPy 的 官方文檔 中提供了完整的代碼文檔和資源列表。
使用 NumPy 對圖像進行 掩膜(mask)操作:
像 NumPy 一樣, SciPy 是 Python 的一個核心科學計算模塊,也可以用於圖像的基本操作和處理。尤其是 SciPy v1.1.0 中的 scipy.ndimage 子模塊,它提供了在 n 維 NumPy 數組上的運行的函數。SciPy 目前還提供了 線性和非線性濾波(linear and non-linear filtering)、 二值形態學(binary morphology)、 B 樣條插值(B-spline interpolation)、 對象測量(object measurements)等方面的函數。
在 官方文檔 中可以查閱到 scipy.ndimage 的完整函數列表。
使用 SciPy 的 高斯濾波 對圖像進行模糊處理:
PIL (Python Imaging Library) 是一個免費 Python 編程庫,它提供了對多種格式圖像文件的打開、編輯、保存的支持。但在 2009 年之後 PIL 就停止發布新版本了。幸運的是,還有一個 PIL 的積極開發的分支 Pillow ,它的安裝過程比 PIL 更加簡單,支持大部分主流的操作系統,並且還支持 Python 3。Pillow 包含了圖像的基礎處理功能,包括像素點操作、使用內置卷積內核進行濾波、顏色空間轉換等等。
Pillow 的 官方文檔 提供了 Pillow 的安裝說明自己代碼庫中每一個模塊的示例。
使用 Pillow 中的 ImageFilter 模塊實現圖像增強:
OpenCV(Open Source Computer Vision 庫)是計算機視覺領域最廣泛使用的庫之一, OpenCV-Python 則是 OpenCV 的 Python API。OpenCV-Python 的運行速度很快,這歸功於它使用 C/C++ 編寫的後台代碼,同時由於它使用了 Python 進行封裝,因此調用和部署的難度也不大。這些優點讓 OpenCV-Python 成為了計算密集型計算機視覺應用程序的一個不錯的選擇。
入門之前最好先閱讀 OpenCV2-Python-Guide 這份文檔。
使用 OpenCV-Python 中的 金字塔融合(Pyramid Blending)將蘋果和橘子融合到一起:
SimpleCV 是一個開源的計算機視覺框架。它支持包括 OpenCV 在內的一些高性能計算機視覺庫,同時不需要去了解 位深度(bit depth)、文件格式、 色彩空間(color space)之類的概念,因此 SimpleCV 的學習曲線要比 OpenCV 平緩得多,正如它的口號所說,「將計算機視覺變得更簡單」。SimpleCV 的優點還有:
官方文檔 簡單易懂,同時也附有大量的學慣用例。
文檔 包含了安裝介紹、示例以及一些 Mahotas 的入門教程。
Mahotas 力求使用少量的代碼來實現功能。例如這個 Finding Wally 游戲 :
ITK (Insight Segmentation and Registration Toolkit)是一個為開發者提供普適性圖像分析功能的開源、跨平台工具套件, SimpleITK 則是基於 ITK 構建出來的一個簡化層,旨在促進 ITK 在快速原型設計、教育、解釋語言中的應用。SimpleITK 作為一個圖像分析工具包,它也帶有 大量的組件 ,可以支持常規的濾波、圖像分割、 圖像配准(registration)功能。盡管 SimpleITK 使用 C++ 編寫,但它也支持包括 Python 在內的大部分編程語言。
有很多 Jupyter Notebooks 用例可以展示 SimpleITK 在教育和科研領域中的應用,通過這些用例可以看到如何使用 Python 和 R 利用 SimpleITK 來實現互動式圖像分析。
使用 Python + SimpleITK 實現的 CT/MR 圖像配准過程:
pgmagick 是使用 Python 封裝的 GraphicsMagick 庫。 GraphicsMagick 通常被認為是圖像處理界的瑞士軍刀,因為它強大而又高效的工具包支持對多達 88 種主流格式圖像文件的讀寫操作,包括 DPX、GIF、JPEG、JPEG-2000、PNG、PDF、PNM、TIFF 等等。
pgmagick 的 GitHub 倉庫 中有相關的安裝說明、依賴列表,以及詳細的 使用指引 。
圖像縮放:
邊緣提取:
Cairo 是一個用於繪制矢量圖的二維圖形庫,而 Pycairo 是用於 Cairo 的一組 Python 綁定。矢量圖的優點在於做大小縮放的過程中不會丟失圖像的清晰度。使用 Pycairo 可以在 Python 中調用 Cairo 的相關命令。
Pycairo 的 GitHub 倉庫 提供了關於安裝和使用的詳細說明,以及一份簡要介紹 Pycairo 的 入門指南 。
使用 Pycairo 繪制線段、基本圖形、 徑向漸變(radial gradients):
以上就是 Python 中的一些有用的圖像處理庫,無論你有沒有聽說過、有沒有使用過,都值得試用一下並了解它們。
via: https://opensource.com/article/19/3/python-image-manipulation-tools
作者: Parul Pandey 選題: lujun9972 譯者: HankChow 校對: wxy
⑻ python是什麼
Python是一種面向對象的解釋型計算機程序設計語言,具有豐富和強大的庫。它常被昵稱為膠水語言,能夠把用其他語言製作的各種模塊(尤其是C/C++)很輕松地聯結在一起。
Python是一種面向對象的解釋型計算機程序設計語言,由荷蘭人Guido van Rossum於1989年發明,第一個公開發行版發行於1991年。
Python作為當下最熱門的編程語言,在2018年世界腳本語言排行榜中位列榜首,已經成為了多個領域的首選語言。
發展歷程
自從20世紀90年代初Python語言誕生至今,它已被逐漸廣泛應用於系統管理任務的處理和Web編程。Python的創始人為Guido van Rossum。1989年聖誕節期間,在阿姆斯特丹,Guido為了打發聖誕節的無趣,決心開發一個新的腳本解釋程序,作為ABC 語言的一種繼承。之所以選中Python(大蟒蛇的意思)作為該編程語言的名字,是取自英國20世紀70年代首播的電視喜劇《蒙提.派森乾的飛行馬戲團》(Monty Python's Flying Circus)。ABC是由Guido參加設計的一種教學語言。就Guido本人看來,ABC 這種語言非常優美和強大,是專門為非專業程序員設計的。但是ABC語言並沒有成功,究其原因,Guido 認為是其非開放造成的。Guido 決心在Python 中避免這一錯誤。同時,他還想實現在ABC 中閃現過但未曾實現的東西。就這樣,Python在Guido手中誕生了。可以說,Python是從ABC發展起來,主要受到了Mola-3(另一種相當優美且強大的語言,為小型團體所設計的)的影響。並且結合了Unix shell和C的習慣。Python已經成為最受歡迎的程序設計語言之一。自從2004年以後,python的使用率呈線性增長。2011年1月,它被TIOBE編程語言排行榜評為2010年度語言.由於Python語言的簡潔性、易讀性以及可擴展性,在國外用Python做科學計算的研究機構日益增多,一些知名大學已經採用Python來教授程序設計課程。例如卡耐基梅隆大學的編程基礎、麻省理工學院的計算機科學及編程導論就使用Python語言講授。眾多開源的科學計算軟體包都提供了Python的調用介面,例如著名的計算機視覺庫OpenCV、三維可視化庫VTK、醫學圖像處理庫ITK。而Python專用的科學計算擴展庫就更多了,例如如下3個十分經典的科學計算擴展庫:NumPy、SciPy和matplotlib,它們分別為Python提供了快速數組處理、數值運算以及繪圖功能。因此Python語言及其眾多的擴展庫所構成的開發環境十分適合工程技術、科研人員處理實驗數據、製作圖表,甚至開發科學計算應用程序。2018年3月,該語言作者在郵件列表上宣布Python 2.7將於2020年1月1日終止支持。用戶如果想要在這個日期之後繼續得到與Python 2.7有關的支持,則需要付費給商業供應商。
Python優點
1. 簡單
我們可以說Python是簡約的語言,非常易於讀寫,遇到問題時,程序員可以把更多的注意力放在問題本身上,而不用花費太多精力在程序語言、語法上。
2. 免費
Python是免費開源的。這意味著程序員不用花錢,就可以共享、復制和交換它,這也幫助Python形成了強壯的社區,使用它更加完善,技術發展更快。專業人士可以在社區和初學者分享他們的知識和經驗。
3. 兼容性
Python兼容眾多平台,所以開發者不會遇到使用其他語言時常會遇到的困擾。
4. 面向對象
Python既支持面向過程,也支持面向對象編程。在面向過程編程中,程序員復用代碼,在面向對象編程中,使用基於數據和函數的對象。盡管面向對象的程序語言通常十分復雜,Python卻設法保持簡潔。
5. 庫
Python社區創造了一大堆各種各樣的Python庫。在他們的幫助下,你可以管理文檔,執行單元測試、資料庫、web瀏覽器、電子郵件、密碼學、圖形用戶界面和更多的東西。所有東西包括在標准庫,然而,除了它,還有很多其他的庫。
Python語言的用途
多年來,Python在各種流行編程語言中一直排名靠前。它幾乎可以適用任何開發,它旨在提高程序員的開發效率而不在於他們編的代碼。Python適用於網站、桌面應用開發,自動化腳本,復雜計算系統,科學計算,生命支持管理系統,物聯網,游戲,機器人,自然語言處理等很多方面。而且,既使對於那些從沒有開發經驗的人來講,Python的代碼也是簡潔易懂的。由於Python程序代碼簡單,所以和與其他程序語言相比,後期的程序維護更容易,更舒心。從商業角度來看,需要的成本降低,程序員的效率提高。
⑼ python能做什麼
python可以做:
1、Web開發;
2、數據科學研究;
3、網路爬蟲;
4、嵌入式應用開發;
5、游戲開發;
6、桌面應用開發。
Python解釋器易於擴展,可以使用C或C++(或者其他可以通過C調用的語言)擴展新的功能和數據類型。Python 也可用於可定製化軟體中的擴展程序語言。Python豐富的標准庫,提供了適用於各個主要系統平台的源碼或機器碼。
(9)itkpython擴展閱讀
由於Python語言的簡潔性、易讀性以及可擴展性,在國外用Python做科學計算的研究機構日益增多,一些知名大學已經採用Python來教授程序設計課程。例如卡耐基梅隆大學的編程基礎、麻省理工學院的計算機科學及編程導論就使用Python語言講授。
眾多開源的科學計算軟體包都提供了Python的調用介面,例如著名的計算機視覺庫OpenCV、三維可視化庫VTK、醫學圖像處理庫ITK。
參考資料來源:網路-Python