1. python可視化界面怎麼做
本文所演示的的可視化方法
散點圖(Scatterplot)
直方圖(Histogram)
小提琴圖(Violinplot)
特徵兩兩對比圖(Pairplot)
安德魯斯曲線(Andrewscurves)
核密度圖(Kerneldensityestimationplot)
平行坐標圖(Parallelcoordinates)
Radviz(力矩圖?)
熱力圖(Heatmap)
氣泡圖(Bubbleplot)
這里主要使用Python一個流行的作圖工具:Seabornlibrary,同時Pandas和bubbly輔助。為什麼Seaborn比較好?
因為很多時候數據分析,建模前,都要清洗數據,清洗後數據的結果總要有個格式,我知道的最容易使用,最方便輸入模型,最好畫圖的格式叫做"TidyData"(WickhamH.Tidydata[J].JournalofStatisticalSoftware,2014,59(10):1-23.)其實很簡單,TidyData格式就是:
每條觀察(記錄)自己佔一行
觀察(記錄)的每個特徵自己佔一列
舉個例子,我們即將作圖的數據集IRIS就是TidyData(IRIS(IRIS數據集)_網路):
Iris數據集是常用的分類實驗數據集,由Fisher,1936收集整理。Iris也稱鳶尾花卉數據集,是一類多重變數分析的數據集。數據集包含150個數據集,分為3類,每類50個數據,每個數據包含4個屬性。可通過花萼長度,花萼寬度,花瓣長度,花瓣寬度4個屬性預測鳶尾花卉屬於(Setosa,Versicolour,Virginica)三個種類中的哪一類。
該數據集包含了5個屬性:
Sepal.Length(花萼長度),單位是cm;
Sepal.Width(花萼寬度),單位是cm;
Petal.Length(花瓣長度),單位是cm;
Petal.Width(花瓣寬度),單位是cm;
種類:IrisSetosa(山鳶尾)、IrisVersicolour(雜色鳶尾),以及IrisVirginica(維吉尼亞鳶尾)。
IRIS數據可以看到,每條觀察(ID=0,1,2...)自己佔一行,每個特徵(四個部位長/寬度,種類)自己佔一列。Seaborn就是為TidyData設計的,所以方便使用。
所以這個數據集有6列,6個特徵,很多時候做可視化就是為了更好的了解數據,比如這里就是想看每個種類的花有什麼特點,怎麼樣根據其他特徵把花分為三類。我個人的喜好是首先一張圖盡量多的包含數據點,展示數據信息,從中發現規律。我們可以利用以下代碼完全展示全部維度和數據這里用的bubbly:
三維圖,全局觀察Python做出來,其實是一張可以拖動角度,放大縮小的圖,拖一拖看各角度視圖會發現三類還是分的挺明顯的。Github上這個bubbly還是很厲害的,方便。
接下來開始做一些基礎的可視化,沒有用任何修飾,代碼只有最關鍵的畫圖部分,可視化作賣敬悄為比賽的一個基礎和開端,個人理解做出的圖能看就行,美不美無所謂,不美也不扣分。因為
散點圖,可以得到相關性等信息,比如基本上SepalLengthCm越大,SepalWidthCm越大
散點圖使用Jointplot,看兩個變數的分布,KDE圖,同時展示對應的數據點
就像上一篇說的,比賽中的每個環節都稿則至關重要,很有必要看下這些分布直方圖,kde圖,根據這些來處理異常值等,這里請教,為什麼畫了直方圖還要畫KDE??我理解說的都是差不多的東西。
關於KDE:"由於核密度估計方法不利用有關數據分布的先驗知識,對數據分布不附加任何假定,是一種從數據樣本本身出發研究數據分布特徵的方法,因而,在統計學理論和應用領域均受到高度的重視。"
無論如何,我們先畫直方圖,再畫KDE
直方圖KDE圖這里通過KDE可以說,由於Setosa的KDE與其他兩種沒有交集,直接可以用Petailength線性區分Setosa與其他兩個物種。
Pairplot箱線圖,顯示一組數據分散情況的統計圖。形狀如箱子。主要用於反映原始數據分布的特徵,關鍵的5個黑線是最中渣大值、最小值、中位數和兩個四分位數。在判斷異常值,處理異常值時候有用。
BoxPlot小提琴圖
Violinplot這個Andrewscurves很有趣,它是把所有特徵組合起來,計算個值,展示該值,可以用來確認這三個物種到底好不好區分,維基網路的說法是「Ifthereisstructureinthedata,itmaybevisibleintheAndrews'curvesofthedata.」(Andrewsplot-Wikipedia)
Andrews'curvesradvizRadviz可視化原理是將一系列多維空間的點通過非線性方法映射到二維空間的可視化技術,是基於圓形平行坐標系的設計思想而提出的多維可視化方法。圓形的m條半徑表示m維空間,使用坐標系中的一點代表多為信息對象,其實現原理參照物理學中物體受力平衡定理。多維空間的點映射到二維可視空間的位置由彈簧引力分析模型確定。(Radviz可視化原理-CSDN博客),能展示一些數據的可區分規律。
數值是皮爾森相關系數,淺顏色表示相關性高,比如Petal.Length(花瓣長度)與Petal.Width(花瓣寬度)相關性0.96,也就是花瓣長的花,花瓣寬度也大,也就是個大花。
不過,現在做可視化基本上不用python了,具體為什麼可以去看我的寫的文章,我拿python做了爬蟲,BI做了可視化,效果和速度都很好。
finereport
可視化的一大應用就是數據報表,而FineReport可以自由編寫整合所需要的報表欄位進行報表輸出,支持定時刷新和監控郵件提醒,是大部分互聯網公司會用到的日常報表平台。
尤其是公司體系內經營報表,我們用的是商業報表工具,就是finereport。推薦他是因為有兩個高效率的點:①可以完成從資料庫取數(有整合數據功能)—設計報表模板—數據展示的過程。②類似excel做報表,一張模板配合參數查詢可以代替幾十張報表。
FineBI
簡潔明了的數據分析工具,也是我個人最喜歡的可視化工具,優點是零代碼可視化、可視化圖表豐富,只需要拖拖拽拽就可以完成十分炫酷的可視化效果,擁有數據整合、可視化數據處理、探索性分析、數據挖掘、可視化分析報告等功能,更重要的是個人版免費。
主要優點是可以實現自助式分析,而且學習成本極低,幾乎不需要太深奧的編程基礎,比起很多國外的工具都比較易用上手,非常適合經常業務人員和運營人員。在綜合性方面,FineBI的表現比較突出,不需要編程而且簡單易做,能夠實現平台展示,比較適合企業用戶和個人用戶,在數據可視化方面是一個不錯的選擇;
這些是我見過比較常用的,對數據探索有幫助的可視化方法。
這個非常簡單,PyQt就可以輕松實現,一個基於Qt的介麵包,可以直接拖拽控制項設計UI界面,下面我簡單介紹一下這個包的安裝和使用,感興趣的朋友可以自己嘗試一下:
1.首先,安裝PyQt模塊,這個直接在cmd窗口輸入命令「pipinstallpyqt5」就行,如下,整個模塊比較大,下載過程需要等待一會兒,保持聯網:
2.安裝完成後,我們就可以直接打開Qt自帶的QtDesigner設計師設計界面了,這里默認會安裝到site-packages->PyQt5->Qt->bin目錄,打開後的界面如下,可以直接新建對話框等窗口,所有的控制項都可以直接拖拽,編輯屬性,非常方便:
3.這里我簡單的設計了一個登錄窗口,2個輸入框和2個按鈕,如下,這里可以直接使用QSS對界面進行美化(設置styleSheet屬性即可),類似網頁的CSS,如果你有一定的前端基礎,那麼美化起來會非常容易:
設計完成後,還只是一個ui文件,不是現成的Python代碼,還需要藉助pyuic5工具(也在bin目錄下)才能將ui文件轉化為Python代碼,切換到ui文件所在目錄,輸入命令「pyuic5-ologin.pylogin.ui」即可(這里替換成你的ui文件),轉化成功後的Python代碼如下(部分截圖):
還需要在最下面添加一個main函數,創建上面Ui_Form類對象顯示窗口即可,如下:
最後點擊運行程序,效果如下,和剛才設計的界面效果一模一樣:
至此,我們就完成了利用Python的PyQt模塊直接拖拽控制項來設計UI界面。總的來說,整個過程非常簡單,只要你有一定的Python基礎,熟悉一下操作過程,很快就能掌握的,當然,還有許多其他UI開發模塊,像tkinter,wxPython,Eric6等,也都非常不錯,網上也有相關教程和資料,介紹的非常詳細,感興趣的話,可以搜一下,希望以上分享的內容能對你有所幫助吧,也歡迎大家評論、留言進行補充。
首先,如果沒有安裝python和PyQt軟體的請先直接搜索下載並安裝。python是一個開源軟體,因此都是可以在網上免費下載的,最新版本即可。下載完成後,我們先打開PyQtdesigner。
2
打開後,首先是一個默認的新建窗口界面,在這里我們就選擇默認的窗口即可。
3
現在是一個完全空白的窗口。第一步我們要先把所有的設計元素都拖進這個窗口。我們先拖入一個「Label」,就是一個不可編輯的標簽。
隨後我們再拖入一個可以編輯的「LineEdit」
最後我們拖入最後一個元素:「PushButton」按鈕,也就是平時我們所點的確定。
目前我們已經把所有所需要的元素都拖入了新建的窗口。對於每一個元素,我們都可以雙擊進行屬性值的修改,此時我們僅需要雙擊改個名字即可
此時我們已經完成了一半,接下來需要對動作信號進行操作。我們需要先切入編輯信號的模式
此時把滑鼠移動到任意元素,都會發現其變成紅色,代表其被選中。
當我們選中pushbutton後,繼續拖動滑鼠指向上面的lineedit,會發現由pushbutton出現一個箭頭指向了lineedit,代表pushbutton的動作會對lineedit進行操作。
隨即會彈出一個配置連接窗口。左邊的是pushbutton的操作,我們選擇clicked(),即點擊pushbutton。
右邊是對lineedit的操作,我們選擇clear(),即清楚lineedit中的內容。
最後我們點擊確定。
保存完成後,我們在PyQt中的操作就已經完成了。保存的文件名我們命名為test,PyQt生成的設計文件後綴是.ui。
2. python 怎樣數據可視化 3d
importrandom
importnumpyasnp
importmatplotlibasmpl
importmatplotlib.pyplotasplt
importmatplotlib.datesasmdates
frommpl_toolkits.mplot3dimportAxes3D
mpl.rcParams['font.size']=10
fig=plt.figure()
ax=fig.add_subplot(111,projection='3d')
forzin[2011,2012,2013,2014]:
xs=xrange(1,13)
ys=1000*np.random.rand(12)
color=plt.cm.Set2(random.choice(xrange(plt.cm.Set2.N)))
ax.bar(xs,ys,zs=z,zdir='y',color=color,alpha=0.8)
ax.xaxis.set_major_locator(mpl.ticker.FixedLocator(xs))
ax.yaxis.set_major_locator(mpl.ticker.FixedLocator(ys))
ax.set_xlabel('Month')
ax.set_ylabel('Year')
ax.set_zlabel('SalesNet[usd]')
plt.show()
效果圖:
利用ptyhonmatplotlib 3D函數可以畫出一些3D視覺圖
3. python可視化數據分析常用圖大集合(收藏)
python數據分析常用圖大集合:包含折線圖、直方圖、垂直條形圖、水平條形圖、餅圖、箱線圖、熱力圖、散點圖、蜘蛛圖、二元變數分布、面積圖、六邊形圖等12種常用可視化數據分析圖,後期還會不斷的收集整理,請關注更新!
以下默認所有的操作都先導入了numpy、pandas、matplotlib、seaborn
一、折線圖
折線圖可以用來表示數據隨著時間變化的趨勢
Matplotlib
plt.plot(x, y)
plt.show()
Seaborn
df = pd.DataFrame({'x': x, 'y': y})
sns.lineplot(x="x", y="y", data=df)
plt.show()
二、直方圖
直方圖是比較常見的視圖,它是把橫坐標等分成了一定數量的小區間,然後在每個小區間內用矩形條(bars)展示該區間的數值
Matplotlib
Seaborn
三、垂直條形圖
條形圖可以幫我們查看類別的特徵。在條形圖中,長條形的長度表示類別的頻數,寬度表示類別。
Matplotlib
Seaborn
1plt.show()
四、水平條形圖
五、餅圖
六、箱線圖
箱線圖由五個數值點組成:最大值 (max)、最小值 (min)、中位數 (median) 和上下四分位數 (Q3, Q1)。
可以幫我們分析出數據的差異性、離散程度和異常值等。
Matplotlib
Seaborn
七、熱力圖
力圖,英文叫 heat map,是一種矩陣表示方法,其中矩陣中的元素值用顏色來代表,不同的顏色代表不同大小的值。通過顏色就能直觀地知道某個位置上數值的大小。
通過 seaborn 的 heatmap 函數,我們可以觀察到不同年份,不同月份的乘客數量變化情況,其中顏色越淺的代表乘客數量越多
八、散點圖
散點圖的英文叫做 scatter plot,它將兩個變數的值顯示在二維坐標中,非常適合展示兩個變數之間的關系。
Matplotlib
Seaborn
九、蜘蛛圖
蜘蛛圖是一種顯示一對多關系的方法,使一個變數相對於另一個變數的顯著性是清晰可見
十、二元變數分布
二元變數分布可以看兩個變數之間的關系
十一、面積圖
面積圖又稱區域圖,強調數量隨時間而變化的程度,也可用於引起人們對總值趨勢的注意。
堆積面積圖還可以顯示部分與整體的關系。折線圖和面積圖都可以用來幫助我們對趨勢進行分析,當數據集有合計關系或者你想要展示局部與整體關系的時候,使用面積圖為更好的選擇。
十二、六邊形圖
六邊形圖將空間中的點聚合成六邊形,然後根據六邊形內部的值為這些六邊形上色。
原文至:https://www.py.cn/toutiao/16894.html
4. Python 中的可視化工具介紹
幾周前,R語言社區經歷了一場關於畫圖工具的討論。對於我們這種外人來說,具體的細節並不重要,但是我們可以將一些有用的觀點運用到 Python 中。討論的重點是 R 語言自帶的繪圖工具 base R 和 Hadley Wickham 開發的繪圖工具 ggplot2 之間的優劣情況。如果你想了解更多細節內容,請閱讀以下幾篇文章:
其中最重要的兩個內容是:
不是所有人都認同第二個觀點,ggplot2確實無法繪制出所有的圖表類型,但是我會利用它來做分析。
以下是 2016 年 4 月寫的關於繪圖工具的概述。出於多方面的原因,繪圖工具的選取更多地取決於個人偏好,因此本文介紹的 Python 繪圖工具也僅代表我的個人使用偏好。
Matplotlib 是一個強大的工具,它是 Pandas' builtin-plotting 和 Seaborn 的基礎。 Matplotlib 能夠繪制許多不同的圖形,還能調用多個級別的許多 API 。我發現 pyplot api 非常好用,你可能用不上 Transforms 或者 artists ,但是如果你有需求的話可以查閱幫助文檔。我將從 pandas 和 seaborn 圖開始介紹,然後介紹如何調用 pyplot 的 API 。
DataFrame 和 Series 擁有 .plot 的命名空間,其中有許多圖形類別可供選擇(line, hist, scatter, 等等)。 Pandas 對象還提供了額外的用於增強圖形展現效果的數據,如索引變數。
由於 pandas 具有更少的向後兼容的限制,所以它具有更好的美學特性。從這方面來說,我認為 pandas 中的 DataFrame.plot 是一個非常實用的快速探索性分析的工具。
Michael Waskom 所開發的 Seaborn 提供了一個高層次的界面來繪制更吸引人統計圖形。 Seaborn 提供了一個可以快速探索分析數據不同特徵的 API 介面,接下來我們將重點介紹它。
Bokeh 是一款針對瀏覽器開發的可視化工具。
和 matplotlib 一樣,**Bokeh
** 擁有一系列 API 介面。比如 glpyhs 介面,該介面和 matplotllib 中的 Artists 介面非常相似,它主要用於繪制環形圖、方形圖和多邊形圖等。最近 Bokeh 又開放了一個新的圖形介面,該介面主要用於處理詞典數據或 DataFrame 數據,並用於繪制罐頭圖。
以下是一些本文沒有提到的可視化工具:
我們將利用 ggplot2 中的 diamonds 數據集,你可以在 Vincent Arelbundock's RDatasets 中找到它(pd.read_csv(' http://vincentarelbundock.github.io/Rdatasets/csv/ggplot2/diamonds.csv') ),此外我們還需要檢測是否已經安裝 feather 。
[站外圖片上傳中……(4)]
Bokeh 提供了兩個 API,一個是低級的 glyph API,另一個是高級的 Charts API。
[站外圖片上傳中……(5)]
還不是很清楚我們應該在啥時候利用 Bokeh 來進行探索性分析,不過它的互動式功能可以激發我的興趣。就個人而言,由於習慣問題我平時仍然一直使用 matplotlib 來繪圖,我還無法完全切換到 Bokeh 中。
我非常喜歡 Bokeh 的儀表盤功能和 bokeh server 的 webapps。
[站外圖片上傳中……(6)]
[站外圖片上傳中……(7)]
[站外圖片上傳中……(8)]
matplotlib 並不局限於處理 DataFrame 數據,它支持所有使用 getitem 作為鍵值的數據類型。
[站外圖片上傳中……(9)]
[站外圖片上傳中……(10)]
我們從列變數的名字中提取出軸標簽,利用 Pandas 可以更加便捷地繪制一系列共享 x 軸數據的圖形。
[站外圖片上傳中……(11)]
[站外圖片上傳中……(12)]
本文中的剩餘部分將重點介紹 seaborn和為什麼我認為它是探索性分析的強大工具。
我強烈建議你閱讀 Seaborn 的 introctory notes,這上面介紹了 seaborn 的設計邏輯和應用領域。
我們可以通過一個穩定的且易懂的 API 介面來調用 Seaborn。
事實上,seaborn 是基於 matplotlib 開發的,這意味著如果你熟悉 pyplot API的話,那麼你可以很容易地掌握 seaborn。
大多數 seaborn 繪圖函數的參數都由 x, y, hue, 和 data 構成(並不是所有的參數都是必須的)。如果你處理的對象是 DataFrame,那麼你可以直接將列變數的名稱和數據集的名稱一同傳遞到繪圖函數中。
[站外圖片上傳中……(13)]
[站外圖片上傳中……(14)]
[站外圖片上傳中……(15)]
[站外圖片上傳中……(16)]
我們可以很輕易地探究兩個變數之間的關系:
[站外圖片上傳中……(17)]
[站外圖片上傳中……(18)]
或者一次探究多個變數之間的關系:
[站外圖片上傳中……(19)]
[站外圖片上傳中……(20)]
pariplot 是 PairGrid 的一個包裝函數,它提供了 seaborn 一個重要的抽象功能——Grid。Seaborn 的 Grid 將 matplotlib 中Figure 和數據集中的變數聯系起來了。
我們有兩種方式可以和 grids 進行交互操作。其一,seaborn 提供了類似於 pairplot 的包裝函數,它提前設置了許多常見任務的參數;其二,如果你需要更多的自定義選項,那麼你可以直接利用 Grid 方法。
[站外圖片上傳中……(21)]
[站外圖片上傳中……(22)]
[站外圖片上傳中……(23)]
34312 rows × 7 columns
[站外圖片上傳中……(24)]
[站外圖片上傳中……(25)]
FaceGrid 可以通過控制分面變數來生成 Grid圖形,其中PairGrid是它的一個特例。接下來的案例中,我們將以數據集中的 cut 變數為分面變數來繪制圖像:
[站外圖片上傳中……(26)]
[站外圖片上傳中……(27)]
最後一個案例展示了如何將 seaborn 和 matplotlib 結合起來。g.axes是matplotlib.Axes的一個數組,g.fig是matplotlib.Figure的一個特例。這是使用 seaborn 時常見的一個模式:利用 seaborn 的方法來繪制圖像,然後再利用 matplotlib 來調整細節部分。
我認為 seaborn 之所以吸引人是因為它的繪圖語法具有很強的靈活性。你不會被作者所設定的圖表類型所局限住,你可以根據自己的需要創建新的圖表。
[站外圖片上傳中……(28)]
[站外圖片上傳中……(29)]
[站外圖片上傳中……(30)]
[站外圖片上傳中……(31)]
本來,我打算準備更多的例子來介紹 seaborn,但是我會將相關鏈接分享給大家。Seaborn 的說明文檔寫的非常詳細。
最後,我們將結合 scikit-learn 來介紹如何利用 GridSearch 來尋找最佳參數。
[站外圖片上傳中……(32)]
[站外圖片上傳中……(33)]
[站外圖片上傳中……(34)]
原文鏈接: http://tomaugspurger.github.io/modern-6-visualization.html
譯者:Fibears