單元測試(Unit Testing)
為程序編寫測試——如果做的到位——有助於減少bug的出現,並可以提高我們對程序按預期目標運行的信心。通常,測試並不能保證正確性,因為對大多數程序而言, 可能的輸入范圍以及可能的計算范圍是如此之大,只有其中最小的一部分能被實際地進 行測試。盡管如此,通過仔細地選擇測試的方法和目標,可以提高代碼的質量。
大量不同類型的測試都可以進行,比如可用性測試、功能測試以及整合測試等。這里, 我們只講單元測試一對單獨的函數、類與方法進行測試,確保其符合預期的行為。
TDD的一個關鍵點是,當我們想添加一個功能時——比如為類添加一個方法—— 我們首次為其編寫一個測試用例。當然,測試將失敗,因為我們還沒有實際編寫該方法。現在,我們編寫該方法,一旦方法通過了測試,就可以返回所有測試,確保我們新添加的代碼沒有任何預期外的副作用。一旦所有測試運行完畢(包括我們為新功能編寫的測試),就可以對我們的代碼進行檢查,並有理有據地相信程序行為符合我們的期望——當然,前提是我們的測試是適當的。
比如,我們編寫了一個函數,該函數在特定的索引位置插入一個字元串,可以像下面這樣開始我們的TDD:
def insert_at(string, position, insert):
"""Returns a of string with insert inserted at the position
>>> string = "ABCDE"
>>> result =[]
>>> for i in range(-2, len(string) + 2):
... result.append(insert_at(string, i,「-」))
>>> result[:5]
['ABC-DE', 'ABCD-E', '-ABCDE','A-BCDE', 'AB-CDE']
>>> result[5:]
['ABC-DE', 'ABCD-E', 'ABCDE-', 'ABCDE-']
"""
return string
對不返回任何參數的函數或方法(通常返回None),我們通常賦予其由pass構成的一個suite,對那些返回值被試用的,我們或者返回一個常數(比如0),或者某個不變的參數——這也是我們這里所做的。(在更復雜的情況下,返回fake對象可能更有用一一對這樣的類,提供mock對象的第三方模塊是可用的。)
運行doctest時會失敗,並列出每個預期內的字元串('ABCD-EF'、'ABCDE-F' 等),及其實際獲取的字元串(所有的都是'ABCD-EF')。一旦確定doctest是充分的和正確的,就可以編寫該函數的主體部分,在本例中只是簡單的return string[:position] + insert+string[position:]。(如果我們編寫的是 return string[:position] + insert,之後復制 string [:position]並將其粘貼在末尾以便減少一些輸入操作,那麼doctest會立即提示錯誤。)
Python的標准庫提供了兩個單元測試模塊,一個是doctest,這里和前面都簡單地提到過,另一個是unittest。此外,還有一些可用於Python的第三方測試工具。其中最著名的兩個是nose (code.google.com/p/python-nose)與py.test (codespeak.net/py/dist/test/test.html), nose 致力於提供比標準的unittest 模塊更廣泛的功能,同時保持與該模塊的兼容性,py.test則採用了與unittest有些不同的方法,試圖盡可能消除樣板測試代碼。這兩個第三方模塊都支持測試發現,因此沒必要寫一個總體的測試程序——因為模塊將自己搜索測試程序。這使得測試整個代碼樹或某一部分 (比如那些已經起作用的模塊)變得很容易。那些對測試嚴重關切的人,在決定使用哪個測試工具之前,對這兩個(以及任何其他有吸引力的)第三方模塊進行研究都是值 得的。
創建doctest是直截了當的:我們在模塊中編寫測試、函數、類與方法的docstrings。 對於模塊,我們簡單地在末尾添加了 3行:
if __name__ =="__main__":
import doctest
doctest.testmod()
在程序內部使用doctest也是可能的。比如,blocks.py程序(其模塊在後面)有自己函數的doctest,但以如下代碼結尾:
if __name__== "__main__":
main()
這里簡單地調用了程序的main()函數,並且沒有執行程序的doctest。要實驗程序的 doctest,有兩種方法。一種是導入doctest模塊,之後運行程序---比如,在控制台中輸 入 python3 -m doctest blocks.py (在 Wndows 平台上,使用類似於 C:Python3 lpython.exe 這樣的形式替代python3)。如果所有測試運行良好,就沒有輸出,因此,我們可能寧願執行python3-m doctest blocks.py-v,因為這會列出每個執行的doctest,並在最後給出結果摘要。
另一種執行doctest的方法是使用unittest模塊創建單獨的測試程序。在概念上, unittest模塊是根據java的JUnit單元測試庫進行建模的,並用於創建包含測試用例的測試套件。unittest模塊可以基於doctests創建測試用例,而不需要知道程序或模塊包含的任何事物——只要知道其包含doctest即可。因此,為給blocks.py程序製作一個測試套件,我們可以創建如下的簡單程序(將其稱為test_blocks.py):
import doctest
import unittest
import blocks
suite = unittest.TestSuite()
suite.addTest(doctest.DocTestSuite(blocks))
runner = unittest.TextTestRunner()
print(runner.run(suite))
注意,如果釆用這種方法,程序的名稱上會有一個隱含的約束:程序名必須是有效的模塊名。因此,名為convert-incidents.py的程序的測試不能寫成這樣。因為import convert-incidents不是有效的,在Python標識符中,連接符是無效的(避開這一約束是可能的,但最簡單的解決方案是使用總是有效模塊名的程序文件名,比如,使用下劃線替換連接符)。這里展示的結構(創建一個測試套件,添加一個或多個測試用例或測試套件,運行總體的測試套件,輸出結果)是典型的機遇unittest的測試。運行時,這一特定實例產生如下結果:
...
.............................................................................................................
Ran 3 tests in 0.244s
OK
每次執行一個測試用例時,都會輸出一個句點(因此上面的輸出最前面有3個句點),之後是一行連接符,再之後是測試摘要(如果有任何一個測試失敗,就會有更多的輸出信息)。
如果我們嘗試將測試分離開(典型情況下是要測試的每個程序和模塊都有一個測試用例),就不要再使用doctests,而是直接使用unittest模塊的功能——尤其是我們習慣於使用JUnit方法進行測試時ounittest模塊會將測試分離於代碼——對大型項目(測試編寫人員與開發人員可能不一致)而言,這種方法特別有用。此外,unittest單元測試編寫為獨立的Python模塊,因此,不會像在docstring內部編寫測試用例時受到兼容性和明智性的限制。
unittest模塊定義了 4個關鍵概念。測試夾具是一個用於描述創建測試(以及用完之後將其清理)所必需的代碼的術語,典型實例是創建測試所用的一個輸入文件,最後刪除輸入文件與結果輸出文件。測試套件是一組測試用例的組合。測試用例是測試的基本單元—我們很快就會看到實例。測試運行者是執行一個或多個測試套件的對象。
典型情況下,測試套件是通過創建unittest.TestCase的子類實現的,其中每個名稱 以「test」開頭的方法都是一個測試用例。如果我們需要完成任何創建操作,就可以在一個名為setUp()的方法中實現;類似地,對任何清理操作,也可以實現一個名為 tearDown()的方法。在測試內部,有大量可供我們使用的unittest.TestCase方法,包括 assertTrue()、assertEqual()、assertAlmostEqual()(對於測試浮點數很有用)、assertRaises() 以及更多,還包括很多對應的逆方法,比如assertFalse()、assertNotEqual()、failIfEqual()、 failUnlessEqual ()等。
unittest模塊進行了很好的歸檔,並且提供了大量功能,但在這里我們只是通過一 個非常簡單的測試套件來感受一下該模塊的使用。這里將要使用的實例,該練習要求創建一個Atomic模塊,該模塊可以用作一 個上下文管理器,以確保或者所有改變都應用於某個列表、集合或字典,或者所有改變都不應用。作為解決方案提供的Atomic.py模塊使用30行代碼來實現Atomic類, 並提供了 100行左右的模塊doctest。這里,我們將創建test_Atomic.py模塊,並使用 unittest測試替換doctest,以便可以刪除doctest。
在編寫測試模塊之前,我們需要思考都需要哪些測試。我們需要測試3種不同的數據類型:列表、集合與字典。對於列表,需要測試的是插入項、刪除項或修改項的值。對於集合,我們必須測試向其中添加或刪除一個項。對於字典,我們必須測試的是插入一個項、修改一個項的值、刪除一個項。此外,還必須要測試的是在失敗的情況下,不會有任何改變實際生效。
結構上看,測試不同數據類型實質上是一樣的,因此,我們將只為測試列表編寫測試用例,而將其他的留作練習。test_Atomic.py模塊必須導入unittest模塊與要進行測試的Atomic模塊。
創建unittest文件時,我們通常創建的是模塊而非程序。在每個模塊內部,我們定義一個或多個unittest.TestCase子類。比如,test_Atomic.py模塊中僅一個單獨的 unittest-TestCase子類,也就是TestAtomic (稍後將對其進行講解),並以如下兩行結束:
if name == "__main__":
unittest.main()
這兩行使得該模塊可以單獨運行。當然,該模塊也可以被導入並從其他測試程序中運行——如果這只是多個測試套件中的一個,這一點是有意義的。
如果想要從其他測試程序中運行test_Atomic.py模塊,那麼可以編寫一個與此類似的程序。我們習慣於使用unittest模塊執行doctests,比如:
import unittest
import test_Atomic
suite = unittest.TestLoader().loadTestsFromTestCase(test_Atomic.TestAtomic)
runner = unittest.TextTestRunner()
pnnt(runner.run(suite))
這里,我們已經創建了一個單獨的套件,這是通過讓unittest模塊讀取test_Atomic 模塊實現的,並且使用其每一個test*()方法(本實例中是test_list_success()、test_list_fail(),稍後很快就會看到)作為測試用例。
我們現在將查看TestAtomic類的實現。對通常的子類(不包括unittest.TestCase 子類),不怎麼常見的是,沒有必要實現初始化程序。在這一案例中,我們將需要建立 一個方法,但不需要清理方法,並且我們將實現兩個測試用例。
def setUp(self):
self.original_list = list(range(10))
我們已經使用了 unittest.TestCase.setUp()方法來創建單獨的測試數據片段。
def test_list_succeed(self):
items = self.original_list[:]
with Atomic.Atomic(items) as atomic:
atomic.append(1999)
atomic.insert(2, -915)
del atomic[5]
atomic[4]= -782
atomic.insert(0, -9)
self.assertEqual(items,
[-9, 0, 1, -915, 2, -782, 5, 6, 7, 8, 9, 1999])
def test_list_fail(self):
items = self.original_list[:]
with self.assertRaises(AttributeError):
with Atomic.Atomic(items) as atomic:
atomic.append(1999)
atomic.insert(2, -915)
del atomic[5]
atomic[4] = -782
atomic.poop() # Typo
self.assertListEqual(items, self.original_list)
這里,我們直接在測試方法中編寫了測試代碼,而不需要一個內部函數,也不再使用unittest.TestCase.assertRaised()作為上下文管理器(期望代碼產生AttributeError)。 最後我們也使用了 Python 3.1 的 unittest.TestCase.assertListEqual()方法。
正如我們已經看到的,Python的測試模塊易於使用,並且極為有用,在我們使用 TDD的情況下更是如此。它們還有比這里展示的要多得多的大量功能與特徵——比如,跳過測試的能力,這有助於理解平台差別——並且這些都有很好的文檔支持。缺失的一個功能——但nose與py.test提供了——是測試發現,盡管這一特徵被期望在後續的Python版本(或許與Python 3.2—起)中出現。
性能剖析(Profiling)
如果程序運行很慢,或者消耗了比預期內要多得多的內存,那麼問題通常是選擇的演算法或數據結構不合適,或者是以低效的方式進行實現。不管問題的原因是什麼, 最好的方法都是准確地找到問題發生的地方,而不只是檢査代碼並試圖對其進行優化。 隨機優化會導致引入bug,或者對程序中本來對程序整體性能並沒有實際影響的部分進行提速,而這並非解釋器耗費大部分時間的地方。
在深入討論profiling之前,注意一些易於學習和使用的Python程序設計習慣是有意義的,並且對提高程序性能不無裨益。這些技術都不是特定於某個Python版本的, 而是合理的Python程序設計風格。第一,在需要只讀序列時,最好使用元組而非列表; 第二,使用生成器,而不是創建大的元組和列表並在其上進行迭代處理;第三,盡量使用Python內置的數據結構 dicts、lists、tuples 而不實現自己的自定義結構,因為內置的數據結構都是經過了高度優化的;第四,從小字元串中產生大字元串時, 不要對小字元串進行連接,而是在列表中累積,最後將字元串列表結合成為一個單獨的字元串;第五,也是最後一點,如果某個對象(包括函數或方法)需要多次使用屬性進行訪問(比如訪問模塊中的某個函數),或從某個數據結構中進行訪問,那麼較好的做法是創建並使用一個局部變數來訪問該對象,以便提供更快的訪問速度。
Python標准庫提供了兩個特別有用的模塊,可以輔助調査代碼的性能問題。一個是timeit模塊——該模塊可用於對一小段Python代碼進行計時,並可用於諸如對兩個或多個特定函數或方法的性能進行比較等場合。另一個是cProfile模塊,可用於profile 程序的性能——該模塊對調用計數與次數進行了詳細分解,以便發現性能瓶頸所在。
為了解timeit模塊,我們將查看一些小實例。假定有3個函數function_a()、 function_b()、function_c(), 3個函數執行同樣的計算,但分別使用不同的演算法。如果將這些函數放於同一個模塊中(或分別導入),就可以使用timeit模塊對其進行運行和比較。下面給出的是模塊最後使用的代碼:
if __name__ == "__main__":
repeats = 1000
for function in ("function_a", "function_b", "function_c"):
t = timeit.Timer("{0}(X, Y)".format(function),"from __main__ import {0}, X, Y".format(function))
sec = t.timeit(repeats) / repeats
print("{function}() {sec:.6f} sec".format(**locals()))
賦予timeit.Timer()構造子的第一個參數是我們想要執行並計時的代碼,其形式是字元串。這里,該字元串是「function_a(X,Y)」;第二個參數是可選的,還是一個待執行的字元串,這一次是在待計時的代碼之前,以便提供一些建立工作。這里,我們從 __main__ (即this)模塊導入了待測試的函數,還有兩個作為輸入數據傳入的變數(X 與Y),這兩個變數在該模塊中是作為全局變數提供的。我們也可以很輕易地像從其他模塊中導入數據一樣來進行導入操作。
調用timeit.Timer對象的timeit()方法時,首先將執行構造子的第二個參數(如果有), 之後執行構造子的第一個參數並對其執行時間進行計時。timeit.Timer.timeit()方法的返回值是以秒計數的時間,類型是float。默認情況下,timeit()方法重復100萬次,並返回所 有這些執行的總秒數,但在這一特定案例中,只需要1000次反復就可以給出有用的結果, 因此對重復計數次數進行了顯式指定。在對每個函數進行計時後,使用重復次數對總數進行除法操作,就得到了平均執行時間,並在控制台中列印出函數名與執行時間。
function_a() 0.001618 sec
function_b() 0.012786 sec
function_c() 0.003248 sec
在這一實例中,function_a()顯然是最快的——至少對於這里使用的輸入數據而言。 在有些情況下一一比如輸入數據不同會對性能產生巨大影響——可能需要使用多組輸入數據對每個函數進行測試,以便覆蓋有代表性的測試用例,並對總執行時間或平均執行時間進行比較。
有時監控自己的代碼進行計時並不是很方便,因此timeit模塊提供了一種在命令行中對代碼執行時間進行計時的途徑。比如,要對MyMole.py模塊中的函數function_a()進行計時,可以在控制台中輸入如下命令:python3 -m timeit -n 1000 -s "from MyMole import function_a, X, Y" "function_a(X, Y)"(與通常所做的一樣,對 Windows 環境,我們必須使用類似於C:Python3lpython.exe這樣的內容來替換python3)。-m選項用於Python 解釋器,使其可以載入指定的模塊(這里是timeit),其他選項則由timeit模塊進行處理。 -n選項指定了循環計數次數,-s選項指定了要建立,最後一個參數是要執行和計時的代碼。命令完成後,會向控制台中列印運行結果,比如:
1000 loops, best of 3: 1.41 msec per loop
之後我們可以輕易地對其他兩個函數進行計時,以便對其進行整體的比較。
cProfile模塊(或者profile模塊,這里統稱為cProfile模塊)也可以用於比較函數 與方法的性能。與只是提供原始計時的timeit模塊不同的是,cProfile模塊精確地展示 了有什麼被調用以及每個調用耗費了多少時間。下面是用於比較與前面一樣的3個函數的代碼:
if __name__ == "__main__":
for function in ("function_a", "function_b", "function_c"):
cProfile.run("for i in ranged 1000): {0}(X, Y)".format(function))
我們必須將重復的次數放置在要傳遞給cProfile.run()函數的代碼內部,但不需要做任何創建,因為模塊函數會使用內省來尋找需要使用的函數與變數。這里沒有使用顯式的print()語句,因為默認情況下,cProfile.run()函數會在控制台中列印其輸出。下面給出的是所有函數的相關結果(有些無關行被省略,格式也進行了稍許調整,以便與頁面適應):
1003 function calls in 1.661 CPU seconds
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.003 0.003 1.661 1.661 :1 ( )
1000 1.658 0.002 1.658 0.002 MyMole.py:21 (function_a)
1 0.000 0.000 1.661 1.661 {built-in method exec}
5132003 function calls in 22.700 CPU seconds
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.487 0.487 22.700 22.700 : 1 ( )
1000 0.011 0.000 22.213 0.022 MyMole.py:28(function_b)
5128000 7.048 0.000 7.048 0.000 MyMole.py:29( )
1000 0.00 50.000 0.005 0.000 {built-in method bisectjeft}
1 0.000 0.000 22.700 22.700 {built-in method exec}
1000 0.001 0.000 0.001 0.000 {built-in method len}
1000 15.149 0.015 22.196 0.022 {built-in method sorted}
5129003 function calls in 12.987 CPU seconds
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.205 0.205 12.987 12.987 :l ( )
1000 6.472 0.006 12.782 0.013 MyMole.py:36(function_c)
5128000 6.311 0.000 6.311 0.000 MyMole.py:37( )
1 0.000 0.000 12.987 12.987 {built-in method exec}
ncalls ("調用的次數")列列出了對指定函數(在filename:lineno(function)中列出) 的調用次數。回想一下我們重復了 1000次調用,因此必須將這個次數記住。tottime (「總的時間」)列列出了某個函數中耗費的總時間,但是排除了函數調用的其他函數內部花費的時間。第一個percall列列出了對函數的每次調用的平均時間(tottime // ncalls)。 cumtime ("累積時間")列出了在函數中耗費的時間,並且包含了函數調用的其他函數內部花費的時間。第二個percall列列出了對函數的每次調用的平均時間,包括其調用的函數耗費的時間。
這種輸出信息要比timeit模塊的原始計時信息富有啟發意義的多。我們立即可以發現,function_b()與function_c()使用了被調用5000次以上的生成器,使得它們的速度至少要比function_a()慢10倍以上。並且,function_b()調用了更多通常意義上的函數,包括調用內置的sorted()函數,這使得其幾乎比function_c()還要慢兩倍。當然,timeit() 模塊提供了足夠的信息來查看計時上存在的這些差別,但cProfile模塊允許我們了解為什麼會存在這些差別。正如timeit模塊允許對代碼進行計時而又不需要對其監控一樣,cProfile模塊也可以做到這一點。然而,從命令行使用cProfile模塊時,我們不能精確地指定要執行的 是什麼——而只是執行給定的程序或模塊,並報告所有這些的計時結果。需要使用的 命令行是python3 -m cProfile programOrMole.py,產生的輸出信息與前面看到的一 樣,下面給出的是輸出信息樣例,格式上進行了一些調整,並忽略了大多數行:
10272458 function calls (10272457 primitive calls) in 37.718 CPU secs
ncalls tottime percall cumtime percall filename:lineno(function)
10.000 0.000 37.718 37.718 :1 ( )
10.719 0.719 37.717 37.717 :12( )
1000 1.569 0.002 1.569 0.002 :20(function_a)
1000 0.011 0.000 22.560 0.023 :27(function_b)
5128000 7.078 0.000 7.078 0.000 :28( )
1000 6.510 0.007 12.825 0.013 :35(function_c)
5128000 6.316 0.000 6.316 0.000 :36( )
在cProfile術語學中,原始調用指的就是非遞歸的函數調用。
以這種方式使用cProfile模塊對於識別值得進一步研究的區域是有用的。比如,這里 我們可以清晰地看到function_b()需要耗費更長的時間,但是我們怎樣獲取進一步的詳細資料?我們可以使用cProfile.run("function_b()")來替換對function_b()的調用。或者可以保存完全的profile數據並使用pstats模塊對其進行分析。要保存profile,就必須對命令行進行稍許修改:python3 -m cProfile -o profileDataFile programOrMole.py。 之後可以對 profile 數據進行分析,比如啟動IDLE,導入pstats模塊,賦予其已保存的profileDataFile,或者也可以在控制台中互動式地使用pstats。
下面給出的是一個非常短的控制台會話實例,為使其適合頁面展示,進行了適當調整,我們自己的輸入則以粗體展示:
$ python3 -m cProfile -o profile.dat MyMole.py
$ python3 -m pstats
Welcome to the profile statistics browser.
% read profile.dat
profile.dat% callers function_b
Random listing order was used
List reced from 44 to 1 e to restriction
Function was called by...
ncalls tottime cumtime
:27(function_b) <- 1000 0.011 22.251 :12( )
profile.dat% callees function_b
Random listing order was used
List reced from 44 to 1 e to restriction
Function called...
ncalls tottime cumtime
:27(function_b)->
1000 0.005 0.005 built-in method bisectJeft
1000 0.001 0.001 built-in method len
1000 1 5.297 22.234 built-in method sorted
profile.dat% quit
輸入help可以獲取命令列表,help後面跟隨命令名可以獲取該命令的更多信息。比如, help stats將列出可以賦予stats命令的參數。還有其他一些可用的工具,可以提供profile數據的圖形化展示形式,比如 RunSnakeRun (www.vrplumber.com/prograinming/runsnakerun), 該工具需要依賴於wxPython GUI庫。
使用timeit與cProfile模塊,我們可以識別出我們自己代碼中哪些區域會耗費超過預期的時間;使用cProfile模塊,還可以准確算岀時間消耗在哪裡。
以上內容部分摘自視頻課程 05後端編程Python-19調試、測試和性能調優(下) ,更多實操示例請參照視頻講解。跟著張員外講編程,學習更輕松,不花錢還能學習真本領。
㈡ Python自動化測試框架有哪些
自動化測試常用的Python框架有哪些?常用的框架有Robot Framework、Pytest、UnitTest/PyUnit、Behave、Lettuce。Pytest、Robot Framework和UnitTest主要用於功能與單元測試,Lettuce和Behave僅適用於行為驅動測試。
一、Robot Framework
Python測試框架之一,Robot Framework被用在測試驅動(test-driven)類型的開發與驗收中。雖然是由Python開發而來,但是它也可以在基於.Net的IronPython和基於Java的Jython上運行。作為一個Python框架,Robot還能夠兼容諸如Windows、MacOS、以及Linux等平台。
在使用Robot Framework(RF)之前,需要先安裝Python 2.7.14及以上的版本。推薦使用Python 3.6.4,以確保適當的注釋能夠被添加到代碼段中,並能夠跟蹤程序的更改。同時還需要安裝Python包管理器--pip。
二、Pytest
適用於多種軟體測試的Pytest,是另一個Python類型的自動化測試框架。憑借著其開源和易學的特點,該工具經常被QA(質量分析)團隊、開發團隊、個人團隊、以及各種開源項目所使用。鑒於Pytest具有「斷言重寫(assert rewriting)」之類的實用功能,許多大型互聯網應用,如Dropbox和Mozilla,都已經從下面將要提到的unittest(Pyunit)切換到了Pytest之上。
除了基本的Python知識,用戶並不需要更多的技術儲備。另外,用戶只需要有一台帶有命令行界面的測試設備,並且安裝好了Python包管理器、以及可用於開發的IDE工具。
三、UnitTest/PyUnit
UnitTest/PyUnit一種標准化的針對單元測試的Python類自動化測試框架。基類TestCase提供了各種斷言方法、以及所有清理和設置的常式。因此,TestCase子類中的每一種方法都是以「test」作為名詞前綴,以標識它們能夠被作為測試用例所運行。用戶可以使用load方法和TestSuite類來分組、並載入各種測試。
可以通過聯合使用,來構建自定義的測試運行器。正如我們使用Junit去測試Selenium那樣,UnitTest也會用到UnitTest-sml-reporting、並能生成各種XML類型的報告。由於UnitTest默認使用了Python,因此我們並不需要什麼先決條件。除了需要具備Python框架的基本知識,您也可以額外地安裝pip、以及用於開發的IDE工具。
四、Behave
行為驅動開發是一種基於敏捷軟體開發的方法。它能夠鼓勵開發人員、業務參與者和QA人員,三者之間的協作。Python測試框架Behave允許團隊避開各種復雜的情況,去執行BDD測試。從本質上說該框架與SpecFlow和Cucumber相似,常被用於執行自動化測試。用戶可以通過簡單易讀的語言來編寫測試用例,並能夠在其執行期間粘貼到代碼之中。而且,那些被設定的行為規范與步驟,也可以被重用到其他的測試方案中。
任何具備Python基礎知識的人都可以使用Behave。其他先決條件還包括:先安裝Python 2.7.14及以上的版本。通過Python包管理器或pip來與Behave協作。大多數開發人員會選擇Pycharm作為開發環境,當然您也可以選用其他的IDE工具。
五、Lettuce
Lettuce是另一種基於Cucumber和Python的行為驅動類自動化工具。Lettuce主要專注於那些具有行為驅動開發特徵的普通任務。它不但簡單易用,而且能夠使得整個測試過程更流暢、甚至更有趣。安裝帶有IDE的Python 2.7.14、及以上的版本。當然,您也可以使用Pycharm或任何其他IDE工具。同時,您還需要安裝Python包管理器。
㈢ 推薦好用的Python編輯器
推薦一:PyCharm
PyCharm 是 JetBrains 開發的 Python IDE。PyCharm用於一般IDE具備的功能,比如, 調試、語法高亮、Project管理、代碼跳轉、智能提示、自動完成、單元測試、版本控制……另外,PyCharm還提供了一些很好的功能用於Django開發,同時支持Google App Engine,更酷的是,PyCharm支持IronPython。
推薦二:Vim
曾有人開玩笑說,如果生成一段隨機字元串,有人回答給他一個Vim 編輯器就可以了。Vim 雖然使用門檻高,但是一旦你學會了,寫代碼的效率杠杠的,Vim是高級文本編輯器,旨在提供實際的Unix 編輯器』Vi』功能,支持更多更完善的特性集。Vim不需要花費太多的學習時間,一旦你需要一個無縫的編程體驗,那麼就會把 Vim 集成到你的工作流中。這是黑客最喜歡的編輯器之一。
推薦三:Eclipse with PyDev
Eclipse 曾今是非常流行的 IDE,而且已經有了很久的歷史。雖然現在慢慢地被 jetbrains 家族替代了,但是瘦死的駱駝比馬大,Eclipse with Pydev 允許開發者創建有用和互動式的 Web 應用。PyDev 是 Eclipse 開發 Python 的 IDE,支持 Python,Jython和 IronPython 的開發。
推薦四:Sublime Text
Sublime Text 是開發者中最流行的編輯器之一,多功能,支持多種語言,而且在開發者社區非常受歡迎。Sublime 有自己的包管理器,開發者可以使用TA來安裝組件,插件和額外的樣式,所有這些都能提升你的編碼體驗。雖然作為收費軟體,良心的是你不需要付費也能正常使用,只不過是不是給你彈出一個購買的窗口,有錢了還是要支持一下正版軟體。
推薦五:Visual Studio Code
Visual Studio Code (VSCode)為MS所開發的code editing tool,免費且開源,並支持Windows,Mac OS,Linux。VSCode像是精簡版的Visual Studio,升級版的Sublime。VSCode由於其非常的輕量,因此使用過程中非常的流暢,對於用戶不同的需要,可以自行下載需要的擴展(Extensions)來安裝。對於配置Python開發環境來說,相比於Sublime,配置起來更加容易。VSCode配置完後的環境是可以直接進行可視化的Debug,再也不用打各種print或者用pdb調試命令了,回歸到Visual Studio里F10和F11。
推薦六: Atom
Atom是由 GitHub 的程序員們打造的稱為「屬於21世紀」的代碼編輯器。它開源免費跨平台(支持 Windows、Mac、Linux 三大桌面平台),並且整合 GIT 並提供類似 SublimeText 的包管理功能,作為一個現代的代碼編輯器,Atom 支持各種編程語言的代碼高亮(HTML / CSS / Javascript / PHP / Python / C / C++ / Objective C / Java / JSON / Perl / coffeescript / Go / Sass / YAML / Markdown 等等)、 與大多數其他編輯器相比,Atom的語言支持已經算是覆蓋非常全面了。另外,它的代碼補全功能(也叫Snippets) 也非常好用,你只需輸入幾個字元即可展開成各種常用代碼,可以極大提高編程效率。
推薦七: Emacs
GNU Emacs 是可擴展,自定義的文本編輯器,甚至是更多的功能。Emacs 的核心是 Emacs Lisp 解析器,但是支持文本編輯。如果你已經使用過 Vim,可以嘗試一下 Emacs。
推薦八:Spyder
Spyder (前身是 Pydee) 是一個強大的互動式 Python 語言開發環境,提供高級的代碼編輯、交互測試、調試等特性,支持包括 Windows、Linux 和 OS X 系統。Spyder是Anaconda科學計算工具中默認的開發工具,做數據分析、搞機器學習的人喜歡這個工具。
9. Thonny
Thonny是基於python內置圖形庫tkinter開發出來的支持多平台(windows,Mac,Linux)的python IDE,支持語法著色、代碼自動補全、debug等功能,如果你正在尋找一種「輕量級」的python IDE,那麼可以試一試Thonny。
10. Wing
Wingware 的 Python IDE 兼容 Python 2.x 和 3.x,可以結合 Django, matplotlib, Zope, Plone, App Engine, PyQt, PySide, wxPython, PyGTK, Tkinter, mod_wsgi, pygame, Maya, MotionBuilder, NUKE, Blender 和其他 Python 框架使用。Wing 支持測試驅動開發,集成了單元測試,nose 和 Django 框架的執行和調試功能。Wing IDE 啟動和運行的速度都非常快,支持 Windows, Linux, OS X 和 Python versi。
㈣ python的庫、方法這么多,寫程序的時候能記住嗎
概述
歡迎大家留言討論,也可以加下我的群給出更多應用案例,交流分享。
㈤ Python自動化測試框架有哪些
1、Unittest
是python內置的標准類庫,它的API跟java的Junit、.net的NUnit、C++的CppUnit很相似,通過繼承unittest.TestCase來創建一個測試用例。
2、 Doctest
Doctest模塊會搜索那些看起來像互動式會話的python代碼片段,然後嘗試執行並驗證結果,即使從來沒有接觸過Doctest,我們也可以從這個名字中窺到一絲端倪,它看起來就好像代碼里的文檔字元串(docstring)一樣。
3、py.test
是python的一種單元測試框架,與python自帶的unittest測試框架類似,但是比unittest框架使用起來更加簡潔、效率更高;根據官方介紹,它具有以下特點:非常容易上手、入門簡單、文檔豐富,有很多實例可以參考;能夠支持簡單的單元測試和復雜的功能測試;支持參數化;支持重復執行失敗的case。
4、Nose
Nose是對unittest的擴展,使得python的測試更加簡單,Nose自動發現測試代碼並執行,提供了大量的插件,nose不是python自帶模塊,需要用pip安裝。
5、tox
最大的特色,是自動化測試環境的管理以及使用多個解析器配置進行測試;
6、Unittest2
是Unittest的升級版本,對API進行了改善以及更好的診斷語法。