1. 如何編寫linux 驅動程序
如何編寫Linux設備驅動程序
回想學習Linux操作系統已經有近一年的時間了,前前後後,零零碎碎的一路學習過來,也該試著寫的東西了。也算是給自己能留下一點記憶和回憶吧!由於完全是自學的,以下內容若有不當之處,還請大家多指教。
Linux是Unix操作系統的一種變種,在Linux下編寫驅動程序的原理和思想完全類似於其他的Unix系統,但它dos或window環境下的驅動程序有很大的區別。在Linux環境下設計驅動程序,思想簡潔,操作方便,功能也很強大,但是支持函數少,只能依賴kernel中的函數,有些常用的操作要自己來編寫,而且調試也不方便。
以下的一些文字主要來源於khg,johnsonm的Write linux device driver,Brennan's Guide to Inline Assembly,The Linux A-Z,還有清華BBS上的有關device driver的一些資料。
一、Linux device driver 的概念
系統調用是操作系統內核和應用程序之間的介面,設備驅動程序是操作系統內核和機器硬體之間的介面。設備驅動程序為應用程序屏蔽了硬體的細節,這樣在應用程序看來,硬體設備只是一個設備文件,應用程序可以象操作普通文件一樣對硬體設備進行操作。設備驅動程序是內核的一部分,它完成以下的功能:
1、對設備初始化和釋放。
2、把數據從內核傳送到硬體和從硬體讀取數據。
3、讀取應用程序傳送給設備文件的數據和回送應用程序請求的數據。
4、檢測和處理設備出現的錯誤。
在Linux操作系統下有三類主要的設備文件類型,一是字元設備,二是塊設備,三是網路設備。字元設備和塊設備的主要區別是:在對字元設備發出讀/寫請求時,實際的硬體I/O一般就緊接著發生了,塊設備則不然,它利用一塊系統內存作緩沖區,當用戶進程對設備請求能滿足用戶的要求,就返回請求的數據,如果不能,就調用請求函數來進行實際的I/O操作。塊設備是主要針對磁碟等慢速設備設計的,以免耗費過多的CPU時間來等待。
已經提到,用戶進程是通過設備文件來與實際的硬體打交道。每個設備文件都都有其文件屬性(c/b),表示是字元設備還是塊設備?另外每個文件都有兩個設備號,第一個是主設備號,標識驅動程序,第二個是從設備號,標識使用同一個設備驅動程序的不同的硬體設備,比如有兩個軟盤,就可以用從設備號來區分他們。設備文件的的主設備號必須與設備驅動程序在登記時申請的主設備號一致,否則用戶進程將無法訪問到驅動程序。
最後必須提到的是,在用戶進程調用驅動程序時,系統進入核心態,這時不再是搶先式調度。也就是說,系統必須在你的驅動程序的子函數返回後才能進行其他的工作。如果你的驅動程序陷入死循環,不幸的是你只有重新啟動機器了,然後就是漫長的fsck。
讀/寫時,它首先察看緩沖區的內容,如果緩沖區的數據未被處理,則先處理其中的內容。
如何編寫Linux操作系統下的設備驅動程序
二、實例剖析
我們來寫一個最簡單的字元設備驅動程序。雖然它什麼也不做,但是通過它可以了解Linux的設備驅動程序的工作原理。把下面的C代碼輸入機器,你就會獲得一個真正的設備驅動程序。
#define __NO_VERSION__
#include <linux/moles.h>
#include <linux/version.h>
char kernel_version [] = UTS_RELEASE;
這一段定義了一些版本信息,雖然用處不是很大,但也必不可少。Johnsonm說所有的驅動程序的開頭都要包含<linux/config.h>,一般來講最好使用。
由於用戶進程是通過設備文件同硬體打交道,對設備文件的操作方式不外乎就是一些系統調用,如 open,read,write,close…, 注意,不是fopen, fread,但是如何把系統調用和驅動程序關聯起來呢?這需要了解一個非常關鍵的數據結構:
struct file_operations
{
int (*seek) (struct inode * ,struct file *, off_t ,int);
int (*read) (struct inode * ,struct file *, char ,int);
int (*write) (struct inode * ,struct file *, off_t ,int);
int (*readdir) (struct inode * ,struct file *, struct dirent * ,int);
int (*select) (struct inode * ,struct file *, int ,select_table *);
int (*ioctl) (struct inode * ,struct file *, unsined int ,unsigned long);
int (*mmap) (struct inode * ,struct file *, struct vm_area_struct *);
int (*open) (struct inode * ,struct file *);
int (*release) (struct inode * ,struct file *);
int (*fsync) (struct inode * ,struct file *);
int (*fasync) (struct inode * ,struct file *,int);
int (*check_media_change) (struct inode * ,struct file *);
int (*revalidate) (dev_t dev);
}
這個結構的每一個成員的名字都對應著一個系統調用。用戶進程利用系統調用在對設備文件進行諸如read/write操作時,系統調用通過設備文件的主設備號找到相應的設備驅動程序,然後讀取這個數據結構相應的函數指針,接著把控制權交給該函數。這是linux的設備驅動程序工作的基本原理。既然是這樣,則編寫設備驅動程序的主要工作就是編寫子函數,並填充file_operations的各個域。
下面就開始寫子程序。
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include<linux/config.h>
#include <linux/errno.h>
#include <asm/segment.h>
unsigned int test_major = 0;
static int read_test(struct inode *node,struct file *file,char *buf,int count)
{
int left;
if (verify_area(VERIFY_WRITE,buf,count) == -EFAULT )
return -EFAULT;
for(left = count ; left > 0 ; left--)
{
__put_user(1,buf,1);
buf++;
}
return count;
}
這個函數是為read調用准備的。當調用read時,read_test()被調用,它把用戶的緩沖區全部寫1。buf 是read調用的一個參數。它是用戶進程空間的一個地址。但是在read_test被調用時,系統進入核心態。所以不能使用buf這個地址,必須用__put_user(),這是kernel提供的一個函數,用於向用戶傳送數據。另外還有很多類似功能的函數。請參考Robert著的《Linux內核設計與實現》(第二版)。然而,在向用戶空間拷貝數據之前,必須驗證buf是否可用。這就用到函數verify_area。
static int write_tibet(struct inode *inode,struct file *file,const char *buf,int count)
{
return count;
}
static int open_tibet(struct inode *inode,struct file *file )
{
MOD_INC_USE_COUNT;
return 0;
}
static void release_tibet(struct inode *inode,struct file *file )
{
MOD_DEC_USE_COUNT;
}
這幾個函數都是空操作。實際調用發生時什麼也不做,他們僅僅為下面的結構提供函數指針。
struct file_operations test_fops = {
NULL,
read_test,
write_test,
NULL, /* test_readdir */
NULL,
NULL, /* test_ioctl */
NULL, /* test_mmap */
open_test,
release_test,
NULL, /* test_fsync */
NULL, /* test_fasync */
/* nothing more, fill with NULLs */
};
這樣,設備驅動程序的主體可以說是寫好了。現在要把驅動程序嵌入內核。驅動程序可以按照兩種方式編譯。一種是編譯進kernel,另一種是編譯成模塊(moles),如果編譯進內核的話,會增加內核的大小,還要改動內核的源文件,而且不能動態的卸載,不利於調試,所以推薦使用模塊方式。
int init_mole(void)
{
int result;
result = register_chrdev(0, "test", &test_fops);
if (result < 0) {
printk(KERN_INFO "test: can't get major number\n");
return result;
}
if (test_major == 0) test_major = result; /* dynamic */
return 0;
}
在用insmod命令將編譯好的模塊調入內存時,init_mole 函數被調用。在這里,init_mole只做了一件事,就是向系統的字元設備表登記了一個字元設備。register_chrdev需要三個參數,參數一是希望獲得的設備號,如果是零的話,系統將選擇一個沒有被佔用的設備號返回。參數二是設備文件名,參數三用來登記驅動程序實際執行操作的函數的指針。
如果登記成功,返回設備的主設備號,不成功,返回一個負值。
void cleanup_mole(void)
{
unregister_chrdev(test_major,"test");
}
在用rmmod卸載模塊時,cleanup_mole函數被調用,它釋放字元設備test在系統字元設備表中佔有的表項。
一個極其簡單的字元設備可以說寫好了,文件名就叫test.c吧。
下面編譯 :
$ gcc -O2 -DMODULE -D__KERNEL__ -c test.c
得到文件test.o就是一個設備驅動程序。
如果設備驅動程序有多個文件,把每個文件按上面的命令行編譯,然後
ld -r file1.o file2.o -o molename。
驅動程序已經編譯好了,現在把它安裝到系統中去。
$ insmod –f test.o
如果安裝成功,在/proc/devices文件中就可以看到設備test,並可以看到它的主設備號。要卸載的話,運行 :
$ rmmod test
下一步要創建設備文件。
mknod /dev/test c major minor
c 是指字元設備,major是主設備號,就是在/proc/devices里看到的。
用shell命令
$ cat /proc/devices
就可以獲得主設備號,可以把上面的命令行加入你的shell script中去。
minor是從設備號,設置成0就可以了。
我們現在可以通過設備文件來訪問我們的驅動程序。寫一個小小的測試程序。
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
main()
{
int testdev;
int i;
char buf[10];
testdev = open("/dev/test",O_RDWR);
if ( testdev == -1 )
{
printf("Cann't open file \n");
exit(0);
}
read(testdev,buf,10);
for (i = 0; i < 10;i++)
printf("%d\n",buf[i]);
close(testdev);
}
編譯運行,看看是不是列印出全1 ?
以上只是一個簡單的演示。真正實用的驅動程序要復雜的多,要處理如中斷,DMA,I/O port等問題。這些才是真正的難點。請看下節,實際情況的處理。
如何編寫Linux操作系統下的設備驅動程序
三、設備驅動程序中的一些具體問題
1。 I/O Port。
和硬體打交道離不開I/O Port,老的ISA設備經常是佔用實際的I/O埠,在linux下,操作系統沒有對I/O口屏蔽,也就是說,任何驅動程序都可對任意的I/O口操作,這樣就很容易引起混亂。每個驅動程序應該自己避免誤用埠。
有兩個重要的kernel函數可以保證驅動程序做到這一點。
1)check_region(int io_port, int off_set)
這個函數察看系統的I/O表,看是否有別的驅動程序佔用某一段I/O口。
參數1:I/O埠的基地址,
參數2:I/O埠佔用的范圍。
返回值:0 沒有佔用, 非0,已經被佔用。
2)request_region(int io_port, int off_set,char *devname)
如果這段I/O埠沒有被佔用,在我們的驅動程序中就可以使用它。在使用之前,必須向系統登記,以防止被其他程序佔用。登記後,在/proc/ioports文件中可以看到你登記的I/O口。
參數1:io埠的基地址。
參數2:io埠佔用的范圍。
參數3:使用這段io地址的設備名。
在對I/O口登記後,就可以放心地用inb(), outb()之類的函來訪問了。
在一些pci設備中,I/O埠被映射到一段內存中去,要訪問這些埠就相當於訪問一段內存。經常性的,我們要獲得一塊內存的物理地址。
2。內存操作
在設備驅動程序中動態開辟內存,不是用malloc,而是kmalloc,或者用get_free_pages直接申請頁。釋放內存用的是kfree,或free_pages。 請注意,kmalloc等函數返回的是物理地址!
注意,kmalloc最大隻能開辟128k-16,16個位元組是被頁描述符結構佔用了。
內存映射的I/O口,寄存器或者是硬體設備的RAM(如顯存)一般佔用F0000000以上的地址空間。在驅動程序中不能直接訪問,要通過kernel函數vremap獲得重新映射以後的地址。
另外,很多硬體需要一塊比較大的連續內存用作DMA傳送。這塊程序需要一直駐留在內存,不能被交換到文件中去。但是kmalloc最多隻能開辟128k的內存。
這可以通過犧牲一些系統內存的方法來解決。
3。中斷處理
同處理I/O埠一樣,要使用一個中斷,必須先向系統登記。
int request_irq(unsigned int irq ,void(*handle)(int,void *,struct pt_regs *),
unsigned int long flags, const char *device);
irq: 是要申請的中斷。
handle:中斷處理函數指針。
flags:SA_INTERRUPT 請求一個快速中斷,0 正常中斷。
device:設備名。
如果登記成功,返回0,這時在/proc/interrupts文件中可以看你請求的中斷。
4。一些常見的問題。
對硬體操作,有時時序很重要(關於時序的具體問題就要參考具體的設備晶元手冊啦!比如網卡晶元RTL8139)。但是如果用C語言寫一些低級的硬體操作的話,gcc往往會對你的程序進行優化,這樣時序會發生錯誤。如果用匯編寫呢,gcc同樣會對匯編代碼進行優化,除非用volatile關鍵字修飾。最保險的辦法是禁止優化。這當然只能對一部分你自己編寫的代碼。如果對所有的代碼都不優化,你會發現驅動程序根本無法裝載。這是因為在編譯驅動程序時要用到gcc的一些擴展特性,而這些擴展特性必須在加了優化選項之後才能體現出來。
寫在後面:學習Linux確實不是一件容易的事情,因為要付出很多精力,也必須具備很好的C語言基礎;但是,學習Linux也是一件非常有趣的事情,它裡麵包含了許多高手的智慧和「幽默」,這些都需要自己親自動手才能體會到,O(∩_∩)O~哈哈!
2. Linux Shell 腳本編程最佳實踐
IT路邊社
前言
與其它的編碼規范一樣,這里所討論的不僅僅是編碼格式美不美觀的問題, 同時也討論一些約定及編碼標准。這份文檔主要側重於我們所普遍遵循的規則,對於那些不是明確強制要求的,我們盡量避免提供意見。
編碼規范對於程序員而言尤為重要,有以下幾個原因:
本文檔中的准則致力於最大限度達到以下原則:
盡管本文檔涵蓋了許多基礎知識,但應注意的是,沒有編碼規范可以為我們回答所有問題,開發人員始終需要再編寫完代碼後,對上述原則做出正確的判斷。
注 :未明確指明的則默認為必須(Mandatory)
主要參考如下文檔:
僅建議Shell用作相對簡單的實用工具或者包裝腳本。因此單個shell腳本內容不宜太過復雜。
在選擇何時使用shell腳本時時應遵循以下原則:
可執行文件不建議有擴展名,庫文件必須使用 .sh 作為擴展名,且應是不可執行的。
執行一個程序時,無需知道其編寫語言,且shell腳本並不要求具有擴展名,所以更傾向可執行文件沒有擴展名。
而庫文件知道其編寫語言十分重要,使用 .sh 作為特定語言後綴的擴展名,可以和其他語言編寫的庫文件加以區分。
文件名要求全部小寫, 可以包含下劃線 _ 或連字元 - , 建議可執行文件使用連字元,庫文件使用下劃線。
正例:
反例:
源文件編碼格式為UTF-8。避免不同操作系統對文件換行處理的方式不同,一律使用 LF 。
每行最多不超過120個字元。每行代碼最大長度限制的根本原因是過長的行會導致閱讀障礙,使得縮進失效。
除了以下兩種情況例外:
如出現長度必須超過120個字元的字元串,應盡量使用here document或者嵌入的換行符等合適的方法使其變短。
示例:
除了在行結束使用換行符,空格是源文件中唯一允許出現的空白字元。
對從來沒有用到的或者被注釋的方法、變數等要堅決從代碼中清理出去,避免過多垃圾造成干擾。
Bash 是唯一被允許使用的可執行腳本shell。
可執行文件必須以 #!/bin/bash 開始。請使用 set 來設置shell的選項,使得用 bash echo "Process $: Done making $$$."
# 示例7:命令參數及路徑不需要引號 grep -li Hugo /dev/ "$1"
# 示例8:常規變數用雙引號,ccs可能為空的特殊情況可不用引號 git send-email --to "${reviewers}" ${ccs:+"--cc" "${ccs}"}
# 示例9:正則用單引號,$1可能為空的特殊情況可不用引號 grep -cP '([Ss]pecial||?characters*) ${1:+"$1"}
# 示例10:位置參數傳遞推薦帶引號的"$@",所有參數作為單字元串傳遞用帶引號的"$*" # content of t.sh func_t { echo num: $# echo args: 1:$1 2:$2 3:$3 }
func_t "$@" func_t "$*" # 當執行 ./t.sh a b c 時輸出如下: num: 3 args: 1:a 2:b 3:c num: 1 args: 1:a b c 2: 3:
使用 $(command) 而不是反引號。
因反引號如果要嵌套則要求用反斜杠轉義內部的反引號。而 $(command) 形式的嵌套無需轉義,且可讀性更高。
正例:
反例:
條件測試
使用 [[ ... ]] ,而不是 [ , test , 和 /usr/bin/[ 。
因為在 [[ 和 ]] 之間不會出現路徑擴展或單詞切分,所以使用 [[ ... ]] 能夠減少犯錯。且 [[ ... ]] 支持正則表達式匹配,而 [ ... ] 不支持。參考以下示例:
盡可能使用變數引用,而非字元串過濾。
Bash可以很好的處理空字元串測試,請使用空/非空字元串測試方法,而不是過濾字元,讓代碼具有更高的可讀性。正例:
反例:
正例:
反例:
正例:
反例:
文件名擴展
當進行文件名的通配符擴展時,請指定明確的路徑。
當目錄中有特殊文件名如以 - 開頭的文件時,使用帶路徑的擴展通配符 ./* 比不帶路徑的 * 要安全很多。
應該避免使用eval。
Eval在用於分配變數時會修改輸入內容,但設置變數的同時並不能檢查這些變數是什麼。反例:
請使用進程替換或者for循環,而不是通過管道連接while循環。
這是因為在管道之後的while循環中,命令是在一個子shell中運行的,因此對變數的修改是不能傳遞給父shell的。
這種管道連接while循環中的隱式子shell使得bug定位非常困難。反例:
如果你確定輸入中不包含空格或者其他特殊符號(通常不是來自用戶輸入),則可以用for循環代替。例如:
使用進程替換可實現重定向輸出,但是請將命令放入顯式子 shell,而非 while 循環創建的隱式子 shell。例如:
總是檢查返回值,且提供有用的返回值。
對於非管道命令,使用 $? 或直接通過 if 語句來檢查以保持其簡潔。
例如:
當內建命令可以完成相同的任務時,在shell內建命令和調用外部命令之間,應盡量選擇內建命令。
因內建命令相比外部命令而言會產生更少的依賴,且多數情況調用內建命令比調用外部命令可以獲得更好的性能(通常外部命令會產生額外的進程開銷)。
正例:
反例:
載入外部庫文件不建議用使用.,建議使用source,已提升可閱讀性。正例:
反例:
除非必要情況,盡量使用單個命令及其參數組合來完成一項任務,而非多個命令加上管道的不必要組合。常見的不建議的用法例如:cat和grep連用過濾字元串; cat和wc連用統計行數; grep和wc連用統計行數等。
正例:
除特殊情況外,幾乎所有函數都不應該使用exit直接退出腳本,而應該使用return進行返回,以便後續邏輯中可以對錯誤進行處理。正例:
反例:
推薦以下工具幫助我們進行代碼的規范:
原文鏈接:http://itxx00.github.io/blog/2020/01/03/shell-standards/
獲取更多的面試題、腳本等運維資料點擊: 運維知識社區 獲取
腳本之---簡訊轟炸機
腳本之---QQ微信轟炸機
ansible---一鍵搭建redis5.0.5集群
elk7.9真集群docker部署文檔
全球最全loki部署及配置文檔
最強安全加固腳本2.0
一鍵設置iptbales腳本
3. linux 系統怎麼編寫一個shell腳本,檢查一個100台設備的是否都具有某項服務,如crond(定時任務
如何編寫一個shell腳本
本文結合大量實例闡述如何編寫一個shell腳本。
為什麼要進行shell編程
在Linux系統中,雖然有各種各樣的圖形化介面工具,但是sell仍然是一個非常靈活的工具。Shell不僅僅是命令的收集,而且是一門非常棒的編程語言。您可以通過使用shell使大量的任務自動化,shell特別擅長系統管理任務,尤其適合那些易用性、可維護性和便攜性比效率更重要的任務。
下面,讓我們一起來看看shell是如何工作的:
建立一個腳本
Linux中有好多中不同的shell,但是通常我們使用bash (bourne again shell) 進行shell編程,因為bash是免費的並且很容易使用。所以在本文中筆者所提供的腳本都是使用bash(但是在大多數情況下,這些腳本同樣可以在bash的大姐,bourne shell中運行)。
如同其他語言一樣,通過我們使用任意一種文字編輯器,比如nedit、kedit、emacs、vi
等來編寫我們的shell程序。
程序必須以下面的行開始(必須方在文件的第一行):
#!/bin/sh
符號#!用來告訴系統它後面的參數是用來執行該文件的程序。在這個例子中我們使用/bin/sh來執行程序。
當編輯好腳本時,如果要執行該腳本,還必須使其可執行。
要使腳本可執行:
chmod +x filename
然後,您可以通過輸入: ./filename 來執行您的腳本。
4. 請問我有一個.so文件,如何在Linux下編程使用呢
-lxx
xx是你的.so文件名
其實使用方法和你使用數學庫函數是一樣的,源代碼中添加
#include <math.h>,編譯的時候,加上-lm參數。
註:linux下的.so文件為共享庫,相當於windows下的dll文件。
linux下編寫調用so文件實例
.so是Linux(Unix)下的動態鏈接庫. 和.dll類似.
比如:
文件有: a.c, b.c, c.c
gcc -c a.c
gcc -c b.c
gcc -c c.c
gcc -shared libXXX.so a.o b.o c.o
要使用的話也很簡單. 比如編譯d.c, 使用到libXXX.so中的函數, libXXX.so地址是MYPATH
gcc d.c -o d -LMYPATH -lXXX
注意不是-llibXXX
test.c文件和一個test.h,這兩個文件要生成libsotest.so文件。然後我還有一個testso.c文件,在這個文件裡面調用libsotest.so中的函數。
編寫的過程中,首先是編譯so文件,我沒有編寫makefile文件,而是參考的2裡面說的直接寫的gcc命令。
因為so文件裡面沒有main函數,所以是不可執行的,所以編譯的時候要加上-c,只生成目標文件。
5. 在Linux系統中,如何運行一個C語言程序
1、打開kali linux的終端。創建一個文件並命名為test.c。在終端輸入:touch test.c。