導航:首頁 > 編程語言 > python並發爬蟲

python並發爬蟲

發布時間:2023-11-26 07:58:22

python爬蟲是什麼

為自動提取網頁的程序,它為搜索引擎從萬維網上下載網頁。

網路爬蟲為一個自動提取網頁的程序,它為搜索引擎從萬維網上下載網頁,是搜索引擎的重要組成。傳統爬蟲從一個或若干初始網頁的URL開始,獲得初始網頁上的URL,在抓取網頁的過程中,不斷從當前頁面上抽取新的URL放入隊列,直到滿足系統的一定停止條件。

將根據一定的搜索策略從隊列中選擇下一步要抓取的網頁URL,並重復上述過程,直到達到系統的某一條件時停止。另外,所有被爬蟲抓取的網頁將會被系統存貯,進行一定的分析、過濾,並建立索引,以便之後的查詢和檢索。

(1)python並發爬蟲擴展閱讀:

網路爬蟲的相關要求規定:

1、由Python標准庫提供了系統管理、網路通信、文本處理、資料庫介面、圖形系統、XML處理等額外的功能。

2、按照網頁內容目錄層次深淺來爬行頁面,處於較淺目錄層次的頁面首先被爬行。 當同一層次中的頁面爬行完畢後,爬蟲再深入下一層繼續爬行。

3、文本處理,包含文本格式化、正則表達式匹配、文本差異計算與合並、Unicode支持,二進制數據處理等功能。

② Python爬蟲如何寫

Python的爬蟲庫其實很多,像常見的urllib,requests,bs4,lxml等,初始入門爬蟲的話,可以學習一下requests和bs4(BeautifulSoup)這2個庫,比較簡單,也易學習,requests用於請求頁面,BeautifulSoup用於解析頁面,下面我以這2個庫為基礎,簡單介紹一下Python如何爬取網頁靜態數據和網頁動態數據,實驗環境win10+python3.6+pycharm5.0,主要內容如下:

Python爬取網頁靜態數據

這個就很簡單,直接根據網址請求頁面就行,這里以爬取糗事網路上的內容為例:

1.這里假設我們要爬取的文本內容如下,主要包括昵稱、內容、好笑數和評論數這4個欄位:

打開網頁源碼,對應網頁結構如下,很簡單,所有欄位內容都可以直接找到:

2.針對以上網頁結構,我們就可以編寫相關代碼來爬取網頁數據了,很簡單,先根據url地址,利用requests請求頁面,然後再利用BeautifulSoup解析數據(根據標簽和屬性定位)就行,如下:

程序運行截圖如下,已經成功爬取到數據:

Python爬取網頁動態數據

很多種情況下,網頁數據都是動態載入的,直接爬取網頁是提取不到任何數據的,這時就需要抓包分析,找到動態載入的數據,一般情況下就是一個json文件(當然,也敬鏈譽可能是其他類型的文件,像xml等),然後請求解析這個json文件,就能獲取到我們需要的數據,這里以爬取人人貸上面的散標數據為例:

1.這里假設我們爬取的數據如下,主要包括年亮段利率,借款標題,期限,金額,進度這5個欄位:

2.按F12調出開發者工具,依次點擊「Network」->「XHR」,F5刷新頁面,就可以找到動態載入的json文件,具體信息如下:

3.接著,針對以上抓包分析,我們就可以編寫相關代碼來爬取數據了,基本思路和上面的靜態網頁差不多,先利用requests請求json,然後再利用python自帶的json包解析數據就行,如下:

程序運行截圖如下,已經成功獲取到數據:

至此,我們就完成了利用python來爬取網頁數據。總的來說,整個過程很簡單,requests和BeautifulSoup對於初學者來說,非常容易學習,也易掌握,可以學習使用一下,後期熟悉後,可以學習一下scrapy爬蟲框架,可以明顯提高開發效率,非常不錯,當然,網頁中要是有加密、驗證碼等,這個就需要自己好好琢磨,研究對策了,網上也有相關教程和資料,感興趣的話,可以搜一下,希望以上分喚陸享的內容能對你上有所幫助吧,也歡迎大家評論、留言。

③ python裡面的爬蟲是什麼

世界上80%的爬蟲是基於Python開發的,學好爬蟲技能,可為後續的大數據分析、挖掘、機器學習等提供重要的數據源。
什麼是爬蟲?
網路爬蟲(又被稱為網頁蜘蛛,網路機器人,在FOAF社區中間,更經常的稱為網頁追逐者),是一種按照一定的規則,自動地抓取萬維網信息的程序或者腳本。另外一些不常使用的名字還有螞蟻、自動索引、模擬程序或者蠕蟲。
其實通俗的講就是通過程序去獲取web頁面上自己想要的數據,也就是自動抓取數據
爬蟲可以做什麼?
你可以用爬蟲爬圖片,爬取視頻等等你想要爬取的數據,只要你能通過瀏覽器訪問的數據都可以通過爬蟲獲取。

④ 如何用Python做爬蟲

1)首先你要明白爬蟲怎樣工作。

想像你是一隻蜘蛛,現在你被放到了互聯「網」上。那麼,你需要把所有的網頁都看一遍。怎麼辦呢?沒問題呀,你就隨便從某個地方開始,比如說人民日報的首頁,這個叫initial pages,用$表示吧。

在人民日報的首頁,你看到那個頁面引向的各種鏈接。於是你很開心地從爬到了「國內新聞」那個頁面。太好了,這樣你就已經爬完了倆頁面(首頁和國內新聞)!暫且不用管爬下來的頁面怎麼處理的,你就想像你把這個頁面完完整整抄成了個html放到了你身上。

突然你發現, 在國內新聞這個頁面上,有一個鏈接鏈回「首頁」。作為一隻聰明的蜘蛛,你肯定知道你不用爬回去的吧,因為你已經看過了啊。所以,你需要用你的腦子,存下你已經看過的頁面地址。這樣,每次看到一個可能需要爬的新鏈接,你就先查查你腦子里是不是已經去過這個頁面地址。如果去過,那就別去了。

好的,理論上如果所有的頁面可以從initial page達到的話,那麼可以證明你一定可以爬完所有的網頁。

那麼在python里怎麼實現呢?
很簡單

import Queue

initial_page = "初始化頁"

url_queue = Queue.Queue()
seen = set()

seen.insert(initial_page)
url_queue.put(initial_page)

while(True): #一直進行直到海枯石爛
if url_queue.size()>0:
current_url = url_queue.get() #拿出隊例中第一個的url
store(current_url) #把這個url代表的網頁存儲好
for next_url in extract_urls(current_url): #提取把這個url里鏈向的url
if next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break

寫得已經很偽代碼了。

所有的爬蟲的backbone都在這里,下面分析一下為什麼爬蟲事實上是個非常復雜的東西——搜索引擎公司通常有一整個團隊來維護和開發。

2)效率
如果你直接加工一下上面的代碼直接運行的話,你需要一整年才能爬下整個豆瓣的內容。更別說Google這樣的搜索引擎需要爬下全網的內容了。

問題出在哪呢?需要爬的網頁實在太多太多了,而上面的代碼太慢太慢了。設想全網有N個網站,那麼分析一下判重的復雜度就是N*log(N),因為所有網頁要遍歷一次,而每次判重用set的話需要log(N)的復雜度。OK,OK,我知道python的set實現是hash——不過這樣還是太慢了,至少內存使用效率不高。

通常的判重做法是怎樣呢?Bloom Filter. 簡單講它仍然是一種hash的方法,但是它的特點是,它可以使用固定的內存(不隨url的數量而增長)以O(1)的效率判定url是否已經在set中。可惜天下沒有白吃的午餐,它的唯一問題在於,如果這個url不在set中,BF可以100%確定這個url沒有看過。但是如果這個url在set中,它會告訴你:這個url應該已經出現過,不過我有2%的不確定性。注意這里的不確定性在你分配的內存足夠大的時候,可以變得很小很少。一個簡單的教程:Bloom Filters by Example

注意到這個特點,url如果被看過,那麼可能以小概率重復看一看(沒關系,多看看不會累死)。但是如果沒被看過,一定會被看一下(這個很重要,不然我們就要漏掉一些網頁了!)。 [IMPORTANT: 此段有問題,請暫時略過]

好,現在已經接近處理判重最快的方法了。另外一個瓶頸——你只有一台機器。不管你的帶寬有多大,只要你的機器下載網頁的速度是瓶頸的話,那麼你只有加快這個速度。用一台機子不夠的話——用很多台吧!當然,我們假設每台機子都已經進了最大的效率——使用多線程(python的話,多進程吧)。

3)集群化抓取
爬取豆瓣的時候,我總共用了100多台機器晝夜不停地運行了一個月。想像如果只用一台機子你就得運行100個月了...

那麼,假設你現在有100台機器可以用,怎麼用python實現一個分布式的爬取演算法呢?

我們把這100台中的99台運算能力較小的機器叫作slave,另外一台較大的機器叫作master,那麼回顧上面代碼中的url_queue,如果我們能把這個queue放到這台master機器上,所有的slave都可以通過網路跟master聯通,每當一個slave完成下載一個網頁,就向master請求一個新的網頁來抓取。而每次slave新抓到一個網頁,就把這個網頁上所有的鏈接送到master的queue里去。同樣,bloom filter也放到master上,但是現在master只發送確定沒有被訪問過的url給slave。Bloom Filter放到master的內存里,而被訪問過的url放到運行在master上的Redis里,這樣保證所有操作都是O(1)。(至少平攤是O(1),Redis的訪問效率見:LINSERT – Redis)

考慮如何用python實現:
在各台slave上裝好scrapy,那麼各台機子就變成了一台有抓取能力的slave,在master上裝好Redis和rq用作分布式隊列。

代碼於是寫成

#slave.py

current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)

store(current_url);
send_to_master(to_send)

#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()

initial_pages = "www.renmingribao.com"

while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)

好的,其實你能想到,有人已經給你寫好了你需要的:darkrho/scrapy-redis · GitHub

4)展望及後處理
雖然上面用很多「簡單」,但是真正要實現一個商業規模可用的爬蟲並不是一件容易的事。上面的代碼用來爬一個整體的網站幾乎沒有太大的問題。

但是如果附加上你需要這些後續處理,比如

有效地存儲(資料庫應該怎樣安排)

有效地判重(這里指網頁判重,咱可不想把人民日報和抄襲它的大民日報都爬一遍)

有效地信息抽取(比如怎麼樣抽取出網頁上所有的地址抽取出來,「朝陽區奮進路中華道」),搜索引擎通常不需要存儲所有的信息,比如圖片我存來幹嘛...

及時更新(預測這個網頁多久會更新一次)

如你所想,這里每一個點都可以供很多研究者十數年的研究。雖然如此,
「路漫漫其修遠兮,吾將上下而求索」。

所以,不要問怎麼入門,直接上路就好了:)

⑤ Python爬蟲:如何在一個月內學會爬取大規模數

爬蟲是入門Python最好的方式,沒有之一。Python有很多應用的方向,比如後台開發、web開發、科學計算等等,但爬蟲對於初學者而言更友好,原理簡單,幾行代碼就能實現基本的爬蟲,學習的過程更加平滑,你能體會更大的成就感。
掌握基本的爬蟲後,你再去學習Python數據分析、web開發甚至機器學習,都會更得心應手。因為這個過程中,Python基本語法、庫的使用,以及如何查找文檔你都非常熟悉了。
對於小白來說,爬蟲可能是一件非常復雜、技術門檻很高的事情。比如有人認為學爬蟲必須精通 Python,然後哼哧哼哧系統學習 Python 的每個知識點,很久之後發現仍然爬不了數據;有的人則認為先要掌握網頁的知識,遂開始 HTMLCSS,結果入了前端的坑,瘁……
但掌握正確的方法,在短時間內做到能夠爬取主流網站的數據,其實非常容易實現,但建議你從一開始就要有一個具體的目標。
在目標的驅動下,你的學習才會更加精準和高效。那些所有你認為必須的前置知識,都是可以在完成目標的過程中學到的。這里給你一條平滑的、零基礎快速入門的學習路徑。
1.學習 Python 包並實現基本的爬蟲過程
2.了解非結構化數據的存儲
3.學習scrapy,搭建工程化爬蟲
4.學習資料庫知識,應對大規模數據存儲與提取
5.掌握各種技巧,應對特殊網站的反爬措施
6.分布式爬蟲,實現大規模並發採集,提升效率
- -
學習 Python 包並實現基本的爬蟲過程
大部分Python爬蟲都是按「發送請求——獲得頁面——解析頁面——抽取並儲存內容」這樣的流程來進行,這其實也是模擬了我們使用瀏覽器獲取網頁信息的過程。
Python爬蟲相關的包很多:urllib、requests、bs4、scrapy、pyspider 等,建議從requests+Xpath 開始,requests 負責連接網站,返回網頁,Xpath 用於解析網頁,便於抽取數據。
如果你用過 BeautifulSoup,會發現 Xpath 要省事不少,一層一層檢查元素代碼的工作,全都省略了。這樣下來基本套路都差不多,一般的靜態網站根本不在話下,豆瓣、糗事網路、騰訊新聞等基本上都可以上手了。
當然如果你需要爬取非同步載入的網站,可以學習瀏覽器抓包分析真實請求或者學習Selenium來實現自動化,這樣,知乎、時光網、貓途鷹這些動態的網站也可以迎刃而解。
- -
了解非結構化數據的存儲
爬回來的數據可以直接用文檔形式存在本地,也可以存入資料庫中。
開始數據量不大的時候,你可以直接通過 Python 的語法或 pandas 的方法將數據存為csv這樣的文件。
當然你可能發現爬回來的數據並不是干凈的,可能會有缺失、錯誤等等,你還需要對數據進行清洗,可以學習 pandas 包的基本用法來做數據的預處理,得到更干凈的數據。
- -
學習 scrapy,搭建工程化的爬蟲
掌握前面的技術一般量級的數據和代碼基本沒有問題了,但是在遇到非常復雜的情況,可能仍然會力不從心,這個時候,強大的 scrapy 框架就非常有用了。
scrapy 是一個功能非常強大的爬蟲框架,它不僅能便捷地構建request,還有強大的 selector 能夠方便地解析 response,然而它最讓人驚喜的還是它超高的性能,讓你可以將爬蟲工程化、模塊化。
學會 scrapy,你可以自己去搭建一些爬蟲框架,你就基本具備爬蟲工程師的思維了。
- -
學習資料庫基礎,應對大規模數據存儲
爬回來的數據量小的時候,你可以用文檔的形式來存儲,一旦數據量大了,這就有點行不通了。所以掌握一種資料庫是必須的,學習目前比較主流的 MongoDB 就OK。
MongoDB 可以方便你去存儲一些非結構化的數據,比如各種評論的文本,圖片的鏈接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。
因為這里要用到的資料庫知識其實非常簡單,主要是數據如何入庫、如何進行提取,在需要的時候再學習就行。
- -
掌握各種技巧,應對特殊網站的反爬措施
當然,爬蟲過程中也會經歷一些絕望啊,比如被網站封IP、比如各種奇怪的驗證碼、userAgent訪問限制、各種動態載入等等。
遇到這些反爬蟲的手段,當然還需要一些高級的技巧來應對,常規的比如訪問頻率控制、使用代理IP池、抓包、驗證碼的OCR處理等等。
往往網站在高效開發和反爬蟲之間會偏向前者,這也為爬蟲提供了空間,掌握這些應對反爬蟲的技巧,絕大部分的網站已經難不到你了。
- -
分布式Python爬蟲,實現大規模並發採集
爬取基本數據已經不是問題了,你的瓶頸會集中到爬取海量數據的效率。這個時候,相信你會很自然地接觸到一個很厲害的名字:分布式爬蟲。
分布式這個東西,聽起來很恐怖,但其實就是利用多線程的原理讓多個爬蟲同時工作,需要你掌握 Scrapy + MongoDB + Redis 這三種工具。
Scrapy 前面我們說過了,用於做基本的

閱讀全文

與python並發爬蟲相關的資料

熱點內容
nat地址訪問外網伺服器 瀏覽:966
怎樣用java編譯一個心形 瀏覽:934
如何使用python中的pygame 瀏覽:836
python實用小工具 瀏覽:24
怎麼在安卓手機上去除馬賽克 瀏覽:235
農行濃情通app怎麼下載 瀏覽:533
怎麼把原文件夾找回來 瀏覽:535
俄羅斯方塊實現python思路 瀏覽:735
漢語拼音英語編譯代碼 瀏覽:501
程序員應具備的能力 瀏覽:606
手機石墨文檔文件夾訪問許可權 瀏覽:656
客戶端如何登陸域文件伺服器 瀏覽:530
兩位數的平方計演算法 瀏覽:930
android圖片分塊 瀏覽:715
圖形平移命令 瀏覽:962
聚類演算法JAVA代碼 瀏覽:407
網站圖標素材壓縮包 瀏覽:892
娛樂化app怎麼做 瀏覽:638
加密貨幣行業前景如何 瀏覽:575
arm查詢法的局限性和編譯流程 瀏覽:81