導航:首頁 > 編程語言 > pythonxml地圖可視化

pythonxml地圖可視化

發布時間:2023-12-01 04:26:40

『壹』 python中數據可視化的兩個庫!

1、Matplotlib

Matplotlib是最全面的Python數據可視化庫。

有人認為Matplotlib的界面很難看,但筆者認為,作為最基礎的Python數據可視化庫,Matplotlib能為使用者的可視化目標提供最大的可能性。

使用JavaScript的開發者們也有各自偏好的可視化庫,但當所處理的任務中涉及大量不被高級庫所支持的定製功能時,開發者們就必須用到D3.js。Matplotlib也是如此。

2、Plotly

雖然堅信要進行數據可視化,就必須得掌握Matplotlib,但大多數情況下讀者更願意使用Plotly,因為使用Plotly只需要寫最少的代碼就能得出最多彩繽紛的圖像。

無論是想構造一張3D表面圖,或是一張基於地圖的散點圖,又或是一張交互性動畫圖,Plotly都能在最短的時間內滿足要求。

Plotly還提供一個表格工作室,使用者可以將自己的可視化上傳到一個在線存儲庫中以便未來進行編輯。

更多Python知識,請關注Python視頻教程!

『貳』 python可視化神器——pyecharts庫

無意中從今日頭條中看到的一篇文章,可以生成簡單的圖表。據說一些大數據開發們也是經常用類似的圖表庫,畢竟有現成的,改造下就行,誰會去自己造輪子呢。

pyecharts是什麼?

pyecharts 是一個用於生成 Echarts 圖表的類庫。Echarts 是網路開源的一個數據可視化 JS 庫。用 Echarts 生成的圖可視化效果非常棒, pyecharts 是為了與 Python 進行對接,方便在 Python 中直接使用數據生成圖 。使用pyecharts可以生成獨立的網頁,也可以在flask、django中集成使用。

安裝很簡單:pip install pyecharts

如需使用 Jupyter Notebook 來展示圖表,只需要調用自身實例即可,同時兼容 Python2 和 Python3 的 Jupyter Notebook 環境。所有圖表均可正常顯示,與瀏覽器一致的交互體驗,簡直不要太強大。

參考自pyecharts官方文檔: http://pyecharts.org

首先開始來繪制你的第一個圖表

使用 Jupyter Notebook 來展示圖表,只需要調用自身實例即可

add() 主要方法,用於添加圖表的數據和設置各種配置項

render() 默認將會在根目錄下生成一個 render.html 的文件,文件用瀏覽器打開。

使用主題

自 0.5.2+ 起,pyecharts 支持更換主體色系

使用 pyecharts-snapshot 插件

如果想直接將圖片保存為 png, pdf, gif 格式的文件,可以使用 pyecharts-snapshot。使用該插件請確保你的系統上已經安裝了 Nodejs 環境。

安裝 phantomjs $ npm install -g phantomjs-prebuilt

安裝 pyecharts-snapshot $ pip install pyecharts-snapshot

調用 render 方法 bar.render(path='snapshot.png') 文件結尾可以為 svg/jpeg/png/pdf/gif。請注意,svg 文件需要你在初始化 bar 的時候設置 renderer='svg'。

圖形繪制過程

基本上所有的圖表類型都是這樣繪制的:

chart_name = Type() 初始化具體類型圖表。

add() 添加數據及配置項。

render() 生成本地文件(html/svg/jpeg/png/pdf/gif)。

add() 數據一般為兩個列表(長度一致)。如果你的數據是字典或者是帶元組的字典。可利用 cast() 方法轉換。

多次顯示圖表

從 v0.4.0+ 開始,pyecharts 重構了渲染的內部邏輯,改善效率。推薦使用以下方式顯示多個圖表。如果使是 Numpy 或者 Pandas,可以參考這個示例

當然你也可以採用更加酷炫的方式,使用 Jupyter Notebook 來展示圖表,matplotlib 有的,pyecharts 也會有的

Note: 從 v0.1.9.2 版本開始,廢棄 render_notebook() 方法,現已採用更加  pythonic  的做法。直接調用本身實例就可以了。

比如這樣

還有這樣

如果使用的是自定義類,直接調用自定義類示例即可

圖表配置

圖形初始化

通用配置項

xyAxis:平面直角坐標系中的 x、y 軸。(Line、Bar、Scatter、EffectScatter、Kline)

dataZoom:dataZoom 組件 用於區域縮放,從而能自由關注細節的數據信息,或者概覽數據整體,或者去除離群點的影響。(Line、Bar、Scatter、EffectScatter、Kline、Boxplot)

legend:圖例組件。圖例組件展現了不同系列的標記(symbol),顏色和名字。可以通過點擊圖例控制哪些系列不顯示。

label:圖形上的文本標簽,可用於說明圖形的一些數據信息,比如值,名稱等。

lineStyle:帶線圖形的線的風格選項(Line、Polar、Radar、Graph、Parallel)

grid3D:3D笛卡爾坐標系組配置項,適用於 3D 圖形。(Bar3D, Line3D, Scatter3D)

axis3D:3D 笛卡爾坐標系 X,Y,Z 軸配置項,適用於 3D 圖形。(Bar3D, Line3D, Scatter3D)

visualMap:是視覺映射組件,用於進行『視覺編碼』,也就是將數據映射到視覺元素(視覺通道)

markLine&markPoint:圖形標記組件,用於標記指定的特殊數據,有標記線和標記點兩種。(Bar、Line、Kline)

tooltip:提示框組件,用於移動或點擊滑鼠時彈出數據內容

toolbox:右側實用工具箱

圖表詳細

Bar(柱狀圖/條形圖)

Bar3D(3D 柱狀圖)

Boxplot(箱形圖)

EffectScatter(帶有漣漪特效動畫的散點圖)

Funnel(漏斗圖)

Gauge(儀表盤)

Geo(地理坐標系)

GeoLines(地理坐標系線圖)

Graph(關系圖)

HeatMap(熱力圖)

Kline/Candlestick(K線圖)

Line(折線/面積圖)

Line3D(3D 折線圖)

Liquid(水球圖)

Map(地圖)

Parallel(平行坐標系)

Pie(餅圖)

Polar(極坐標系)

Radar(雷達圖)

Sankey(桑基圖)

Scatter(散點圖)

Scatter3D(3D 散點圖)

ThemeRiver(主題河流圖)

TreeMap(矩形樹圖)

WordCloud(詞雲圖)

用戶自定義

Grid 類:並行顯示多張圖

Overlap 類:結合不同類型圖表疊加畫在同張圖上

Page 類:同一網頁按順序展示多圖

Timeline 類:提供時間線輪播多張圖

統一風格

註:pyecharts v0.3.2以後,pyecharts 將不再自帶地圖 js 文件。如用戶需要用到地圖圖表,可自行安裝對應的地圖文件包。

地圖文件被分成了三個 Python 包,分別為:

全球國家地圖:

echarts-countries-pypkg

中國省級地圖:

echarts-china-provinces-pypkg

中國市級地圖:

echarts-china-cities-pypkg

直接使用python的pip安裝

但是這里大家一定要注意,安裝完地圖包以後一定要重啟jupyter notebook,不然是無法顯示地圖的。

顯示如下:

總得來說,這是一個非常強大的可視化庫,既可以集成在flask、Django開發中,也可以在做數據分析的時候單獨使用,實在是居家旅行的必備神器啊

『叄』 Python中數據可視化的兩個庫!

1. Matplotlib:是Python中眾多數據可視化庫的鼻祖,其設計風格與20世紀80年代的商業化程序語言MATLAB十分相似,具有很多強大且復雜的可視化功能;還包含了多種類型的API,可以採用多種方式繪制圖標並對圖標進行定製。
2. Seaborn:是基於Matplotlib進行高級封裝的可視化庫,支持互動式界面,使繪制圖表功能變得簡單,且圖表的色彩更具吸引力。
3. ggplot:是基於Matplotlib並旨在以簡單方式提高Matplotlib可視化感染力的庫,採用疊加圖層的形式繪制圖形,比如先繪制坐標軸所在的圖層,再繪制點所在的圖層,最後繪制線所在的圖層,但其並不適用於個性化定製圖形。
4. Boken:是一個互動式的可視化庫,支持使用Web瀏覽器展示,可使用快速簡單的方式將大型數據集轉換成高性能的、可交互的、結構簡單的圖表。
5. Pygal:是一個可縮放矢量圖標庫,用於生成可在瀏覽器中打開的SVG格式的圖表,這種圖表能夠在不同比例的屏幕上自動縮放,方便用戶交互。
6. Pyecharts:是一個生成ECharts的庫,生成的ECharts憑借良好的交互性、精巧的設計得到了眾多開發者的認可。

『肆』 python做可視化數據分析,究竟怎麼樣

當然非常不錯,作為一門應用廣泛的編程語言,python第三方庫擴展豐富,針對數據可視化,提供了許多高效、簡便的包可以直接使用,下面我簡單介紹3個,分別是matplotlib、seaborn和pyecharts,感興趣的朋友可以嘗試一下:

老牌工具matplotlib

這是python一個非常著名的可視化工具,相信許多做過可視化的朋友都對matplotlib非常熟悉,專業強大、功能齊全、擴展豐富,幾乎你能想到的各種圖表,matplotlib都可以輕松辦到,小到常見的柱狀圖、餅狀圖、折線圖,大到復雜的動圖、三維圖、自定義襪高圖,matplotlib都有深入涉及,種類繁多,代碼齊全,如果你想做數據可視化,繪制專業的圖表以供顯示,可以使用一下matplotlib,效果非常不錯:

精簡封裝seaborn

這也是一個非常不錯的python可視化包,基於matplotlib開發,對matplotlib的復雜參數和調用做了精簡封裝,因此使用起來更方便枯和,也更容易入手,常見的散點圖、曲線圖、柱狀圖、餅狀圖、熱力圖、箱型圖、小提琴圖,這個庫都有深入涉及,demo豐富,告敗尺代碼齊全,官方教程詳細,如果你想快速繪制專業強大的圖表,簡化復雜的參數配置,可以使用一下seaborn,代碼更少,也更容易學習:

簡單易用pyecharts

使用過echarts的朋友應該對pyecharts非常熟悉了,python對echarts的一個簡單封裝和調用,藉助於echarts強大的數據可視化功能,pyecharts也可以輕松繪制各種圖表,常見的柱狀圖、餅狀圖、散點圖、曲線圖,復雜的地圖、樹圖、k線圖、儀表盤、地理圖、三維圖,pyecharts都可以輕松辦到,專業強大、制圖漂亮、簡單易用,如果你想繪制簡潔大方的圖表,基於web頁面進行顯示,可以使用一下pyecharts,效果非常不錯:

目前就分享這3個不錯的python可視化庫吧,其實還有許多其他包也可以直接使用,像ggplot、bokeh等也都非常不錯,只要你有一定python基礎,熟悉一下相關代碼和示例,很快就能掌握的,網上也有相關教程和資料,介紹的非常詳細,感興趣的話,可以搜一下,希望以上分享的內容能對你有所幫助吧,也歡迎大家評論、留言進行補充。

『伍』 強烈推薦一款Python可視化神器!強烈必備!

Plotly Express 是一個新的高級 Python 可視化庫:它是 Plotly.py 的高級封裝,它為復雜的圖表提供了一個簡單的語法。

受 Seaborn 和 ggplot2 的啟發,它專門設計為具有簡潔,一致且易於學習的 API :只需一次導入,您就可以在一個函數調用中創建豐富的互動式繪圖,包括分面繪圖(faceting)、地圖、動畫和趨勢線。 它帶有數據集、顏色面板和主題,就像 Plotly.py 一樣。

Plotly Express 完全免費:憑借其寬松的開源 MIT 許可證,您可以隨意使用它(是的,甚至在商業產品中!)。

最重要的是,Plotly Express 與 Plotly 生態系統的其他部分完全兼容:在您的 Dash 應用程序中使用它,使用 Orca 將您的數據導出為幾乎任何文件格式,或使用JupyterLab 圖表編輯器在 GUI 中編輯它們!

用 pip install plotly_express 命令可以安裝 Plotly Express。

一旦導入Plotly Express(通常是 px ),大多數繪圖只需要一個函數調用,接受一個整潔的Pandas dataframe,並簡單描述你想要製作的圖。 如果你想要一個基本的散點圖,它只是 px.scatter(data,x =「column_name」,y =「column_name」)。

以下是內置的 Gapminder 數據集的示例,顯示2007年按國家/地區的人均預期壽命和人均GDP 之間的趨勢:

如果你想通過大陸區分它們,你可以使用 color 參數為你的點著色,由 px 負責設置默認顏色,設置圖例等:

這里的每一點都是一個國家,所以也許我們想要按國家人口來衡量這些點...... 沒問題:這里也有一個參數來設置,它被稱為 size:

如果你好奇哪個國家對應哪個點? 可以添加一個 hover_name ,您可以輕松識別任何一點:只需將滑鼠放在您感興趣的點上即可! 事實上,即使沒有 hover_name ,整個圖表也是互動的:

也可以通過 facet_col =」continent「 來輕松劃分各大洲,就像著色點一樣容易,並且讓我們使用 x軸 對數(log_x)以便在我們在圖表中看的更清晰:

也許你不僅僅對 2007年 感興趣,而且你想看看這張圖表是如何隨著時間的推移而演變的。 可以通過設置 animation_frame=「year」 (以及 animation_group =「country」 來標識哪些圓與控制條中的年份匹配)來設置動畫。

在這個最終版本中,讓我們在這里調整一些顯示,因為像「gdpPercap」 這樣的文本有點難看,即使它是我們的數據框列的名稱。 我們可以提供更漂亮的「標簽」 (labels),可以在整個圖表、圖例、標題軸和懸停(hovers)中應用。 我們還可以手動設置邊界,以便動畫在整個過程中看起來更棒:

因為這是地理數據,我們也可以將其表示為動畫地圖,因此這清楚地表明 Plotly Express 不僅僅可以繪制散點圖(不過這個數據集缺少前蘇聯的數據)。

事實上,Plotly Express 支持三維散點圖、三維線形圖、極坐標和地圖上三元坐標以及二維坐標。 條形圖(Bar)有二維笛卡爾和極坐標風格。

進行可視化時,您可以使用單變數設置中的直方圖(histograms)和箱形圖(box)或小提琴圖(violin plots),或雙變數分布的密度等高線圖(density contours)。 大多數二維笛卡爾圖接受連續或分類數據,並自動處理日期/時間數據。 可以查看我們的圖庫 (ref-3) 來了解每個圖表的例子。

數據 探索 的主要部分是理解數據集中值的分布,以及這些分布如何相互關聯。 Plotly Express 有許多功能來處理這些任務。

使用直方圖(histograms),箱形圖(box)或小提琴圖(violin plots)可視化單變數分布:

直方圖:

箱形圖:

小提琴圖:

還可以創建聯合分布圖(marginal rugs),使用直方圖,箱形圖(box)或小提琴來顯示雙變數分布,也可以添加趨勢線。 Plotly Express 甚至可以幫助你在懸停框中添加線條公式和R²值! 它使用 statsmodels 進行普通最小二乘(OLS)回歸或局部加權散點圖平滑(LOWESS)。

在上面的一些圖中你會注意到一些不錯的色標。 在 Plotly Express 中, px.colors 模塊包含許多有用的色標和序列:定性的、序列型的、離散的、循環的以及所有您喜歡的開源包:ColorBrewer、cmocean 和 Carto 。 我們還提供了一些功能來製作可瀏覽的樣本供您欣賞(ref-3):

定性的顏色序列:

眾多內置順序色標中的一部分:

我們特別為我們的互動式多維圖表感到自豪,例如散點圖矩陣(SPLOMS)、平行坐標和我們稱之為並行類別的並行集。 通過這些,您可以在單個圖中可視化整個數據集以進行數據 探索 。 在你的Jupyter 筆記本中查看這些單行及其啟用的交互:

散點圖矩陣(SPLOM)允許您可視化多個鏈接的散點圖:數據集中的每個變數與其他變數的關系。 數據集中的每一行都顯示為每個圖中的一個點。 你可以進行縮放、平移或選擇操作,你會發現所有圖都鏈接在一起!

平行坐標允許您同時顯示3個以上的連續變數。 dataframe 中的每一行都是一行。 您可以拖動尺寸以重新排序它們並選擇值范圍之間的交叉點。

並行類別是並行坐標的分類模擬:使用它們可視化數據集中多組類別之間的關系。

Plotly Express 之於 Plotly.py 類似 Seaborn 之於 matplotlib:Plotly Express 是一個高級封裝庫,允許您快速創建圖表,然後使用底層 API 和生態系統的強大功能進行修改。 對於Plotly 生態系統,這意味著一旦您使用 Plotly Express 創建了一個圖形,您就可以使用Themes,使用 FigureWidgets 進行命令性編輯,使用 Orca 將其導出為幾乎任何文件格式,或者在我們的 GUI JupyterLab 圖表編輯器中編輯它 。

主題(Themes)允許您控制圖形范圍的設置,如邊距、字體、背景顏色、刻度定位等。 您可以使用模板參數應用任何命名的主題或主題對象:

有三個內置的 Plotly 主題可以使用, 分別是 plotly, plotlywhite 和 plotlydark。

px 輸出繼承自 Plotly.py 的 Figure 類 ExpressFigure 的對象,這意味著你可以使用任何 Figure 的訪問器和方法來改變 px生成的繪圖。 例如,您可以將 .update() 調用鏈接到 px 調用以更改圖例設置並添加註釋。 .update() 現在返回修改後的數字,所以你仍然可以在一個很長的 Python 語句中執行此操作:

在這里,在使用 Plotly Express 生成原始圖形之後,我們使用 Plotly.py 的 API 來更改一些圖例設置並添加註釋。

Dash 是 Plotly 的開源框架,用於構建具有 Plotly.py 圖表的分析應用程序和儀錶板。Plotly Express 產生的對象與 Dash 100%兼容,只需將它們直接傳遞到 dash_core_components.Graph,如下所示: dcc.Graph(figure = px.scatter(...))。 這是一個非常簡單的 50行 Dash 應用程序的示例,它使用 px 生成其中的圖表:

這個 50 行的 Dash 應用程序使用 Plotly Express 生成用於瀏覽數據集的 UI 。

可視化數據有很多原因:有時您想要提供一些想法或結果,並且您希望對圖表的每個方面施加很多控制,有時您希望快速查看兩個變數之間的關系。 這是交互與 探索 的范疇。

Plotly.py 已經發展成為一個非常強大的可視化交互工具:它可以讓你控制圖形的幾乎每個方面,從圖例的位置到刻度的長度。 不幸的是,這種控制的代價是冗長的:有時可能需要多行 Python 代碼才能用 Plotly.py 生成圖表。

我們使用 Plotly Express 的主要目標是使 Plotly.py 更容易用於 探索 和快速迭代。

我們想要構建一個庫,它做出了不同的權衡:在可視化過程的早期犧牲一些控制措施來換取一個不那麼詳細的 API,允許你在一行 Python 代碼中製作各種各樣的圖表。 然而,正如我們上面所示,該控制項並沒有消失:你仍然可以使用底層的 Plotly.py 的 API 來調整和優化用 Plotly Express 製作的圖表。

支持這種簡潔 API 的主要設計決策之一是所有 Plotly Express 的函數都接受「整潔」的 dataframe 作為輸入。 每個 Plotly Express 函數都體現了dataframe 中行與單個或分組標記的清晰映射,並具有圖形啟發的語法簽名,可讓您直接映射這些標記的變數,如 x 或 y 位置、顏色、大小、 facet-column 甚至是 動畫幀到數據框(dataframe)中的列。 當您鍵入 px.scatter(data,x ='col1',y='col2') 時,Plotly Express 會為數據框中的每一行創建一個小符號標記 - 這就是 px.scatter 的作用 - 並將 「col1」 映射到 x 位置(類似於 y 位置)。 這種方法的強大之處在於它以相同的方式處理所有可視化變數:您可以將數據框列映射到顏色,然後通過更改參數來改變您的想法並將其映射到大小或進行行分面(facet-row)。

接受整個整潔的 dataframe 的列名作為輸入(而不是原始的 numpy 向量)也允許 px 為你節省大量的時間,因為它知道列的名稱,它可以生成所有的 Plotly.py 配置用於標記圖例、軸、懸停框、構面甚至動畫幀。 但是,如上所述,如果你的 dataframe 的列被笨拙地命名,你可以告訴 px 用每個函數的 labels 參數替換更好的。

僅接受整潔輸入所帶來的最終優勢是它更直接地支持快速迭代:您整理一次數據集,從那裡可以使用 px 創建數十種不同類型的圖表,包括在 SPLOM 中可視化多個維度 、使用平行坐標、在地圖上繪制,在二維、三維極坐標或三維坐標中使用等,所有這些都不需要重塑您的數據!

在 API 級別,我們在 px 中投入了大量的工作,以確保所有參數都被命名,以便在鍵入時最大限度地發現:所有 scatter -類似的函數都以 scatter 開頭(例如 scatter_polar, scatter_ternary)所以你可以通過自動補全來發現它們。 我們選擇拆分這些不同的散點圖函數,因此每個散點圖函數都會接受一組定製的關鍵字參數,特別是它們的坐標系。 也就是說,共享坐標系的函數集(例如 scatter, line & bar,或 scatter_polar, line_polar 和 bar_polar )也有相同的參數,以最大限度地方便學習。 我們還花了很多精力來提出簡短而富有表現力的名稱,這些名稱很好地映射到底層的 Plotly.py 屬性,以便於在工作流程中稍後調整到交互的圖表中。

最後,Plotly Express 作為一個新的 Python 可視化庫,在 Plotly 生態系統下,將會迅速發展。所以不要猶豫,立即開始使用 Plotly Express 吧!

『陸』 Python中數據可視化經典庫有哪些

Python有很多經典的數據可視化庫,比較經典的數據可視化庫有下面幾個。

matplotlib

是Python編程語言及其數值數學擴展包 NumPy 的可視化操作界面。它利用通用的圖形用戶界面工具包,如 Tkinter, wxPython, Qt 或 GTK+,向應用程序嵌入式繪圖提供了應用程序介面。

pyplot 是 matplotlib 的一個模塊,它提供了一個類似 MATLAB 的介面。 matplotlib 被設計得用起來像 MATLAB,具有使用 Python 的能力。

優點:繪圖質量高,可繪制出版物質量級別的圖形。代碼夠簡單,易於理解和擴展,使繪圖變得輕松,通過Matplotlib可以很輕松地畫一些或簡單或復雜的圖形,幾行代碼即可生成直方圖、條形圖、散點圖、密度圖等等,最重要的是免費和開源。

優點:用於創建、操縱和研究復雜網路的結構、以及學習復雜網路的結構、功能及其動力學。

上面是我的回答,希望對您有所幫助!

『柒』 「Python」使用Pyecharts生成疫情分布地圖

最近受江蘇疫情影響,好多小夥伴都居家辦公咯!為了密切關注疫情動態,最近寫了爬取疫情分布的腳本,參考上篇鏈接。


既然我們已經獲得了相應的江蘇各個地級市的疫情數據,那麼我們如何來使用Python實現將數據可視化在地圖上呢?

Apache Echarts 是一個由網路開源的數據可視化,憑借著良好的交互性,精巧的圖表設計,得到了眾多開發者的認可。而 Python 是一門富有表達力的語言,很適合用於數據處理。當數據分析遇上數據可視化時,pyecharts 誕生了。


簡單來說,pyecharts具有以下特性:

3. Pyecharts 安裝

使用pip進行安裝如下:


因為我們需要使用pycharts繪制地圖,此時我們還需要安裝相應的地圖文件包:


其中:

echarts-countries-pypkg 包為全球國家地圖

echarts-china-provinces-pypkg包為中國省級地圖

echarts-china-cities-pypkg 包為中國市級地圖

安裝完上述繪制地圖相關的python包後,我們接下來開始畫疫情分布地圖。

首先,我們先來查看一段Pyecharts相關實現:


上述代碼解釋如下:

運行後會在當前目錄生成 map_jiangsu_0803.html,用瀏覽器打開後結果如下:


當滑鼠移動到對應區域後,會顯示出對應地級市今日新增人數。



上述腳本雖然可以實現我們的功能,但是顏色灰灰的,太過於單調,接下來我們來想辦法進行美化,實現代碼如下:


代碼解釋如下:

運行後會在當前目錄生成 map_jiangsu_0803_new.html,用瀏覽器打開後結果如下:


同理我們可以得到現有確診人數分布如下:


進而我們可以得到累計確診人數分布如下:

『捌』 【可視化】python地圖可視化_Folium

Folium是Leaflet.js的Python的API,即可以使用Python語言調用Leaflet的地圖可視化能力。
其中,Leaflet是一個非常輕的前端地圖可視化庫。

默認參數為OpenStreetMap地圖,(0,0)經緯度坐標,全球范圍縮放

最簡單的配置,初始化中心位置和縮放尺度

文檔說內置「Mapbox Bright」和「Mapbox Control Room」,本次實驗中無法載入

瓦片地址參考 http://openwhatevermap.xyz

瓦片地址參考頁面頂部鏈接

各種要素可以設置顏色、大小、文字標記等屬性,具體看操作手冊
這里以高德地圖為底圖,添加點、線、面形狀

以高德地圖API的坐標提取器為准,取操場位置的坐標,並打在默認地圖和高德地圖上,可以看到坐標不同

做地圖可視化的方法,通常有

其中

python語言近年來比較熱,也有很多可視化庫可以用,但是在地圖的可視化方面很弱。有一些可視化庫也支持一點點,如plotly內置的mapbox可視化;還有上面提到的的pyecharts可以做形狀,底圖(應該)可以用網路地圖。但是這些或者不靈活、或者限定了底圖,基本能力還是有的,雖然都不全。

背景完,具體內容到頁面頂部。

『玖』 Python中除了matplotlib外還有哪些數據可視化的庫

數據可視化是展示數據、理解數據的有效手段,常用的Python數據可視化庫如下:
1.Matplotlib:第一個Python可視化庫,有許多別的程序庫都是建立在其基礎上或者直接調用該庫,可以很方便地得到數據的大致信息,功能非常強大,但也非常復雜。
2.Seaborn:利用Matplotlib,用簡潔的代碼來製作好看的圖表,與Matplotlib最大的區別為默認繪圖風格和色彩搭配都具有現代美感。
3.ggplot:基於R的一個作圖庫的ggplot2,同時利用了源於《圖像語法》中的概念,允許疊加不同的圖層來完成一幅圖,並不適用於製作非常個性化的圖像,為操作的簡潔度而犧牲了圖像的復雜度。
4.Bokeh:與ggplot很相似,但與ggplot不同之處為它完全基於Python而不是從R處引用。長處在於能用於製作可交互、可直接用於網路的圖表。圖表可以輸出為JSON對象、HTML文檔或者可交互的網路應用。
5.Plotly:可以通過Python notebook使用,與bokeh一樣致力於交互圖表的製作,但提供在別的庫中幾乎沒有的幾種圖表類型,如等值線圖、樹形圖和三維圖表。
6.pygal:與Bokeh和Plotly一樣,提供可直接嵌入網路瀏覽器的可交互圖像。與其他兩者的主要區別在於可將圖表輸出為SVG格式,所有的圖表都被封裝成方法,且默認的風格也很漂亮,用幾行代碼就可以很容易地製作出漂亮的圖表。
7.geoplotlib:用於製作地圖和地理相關數據的工具箱。可用來製作多種地圖,比如等值區域圖、熱度圖、點密度圖等,必須安裝Pyglet方可使用。
8.missingno:用圖像的方式快速評估數據缺失的情況,可根據數據的完整度對數據進行排序或過濾,或者根據熱度圖或樹狀圖對數據進行修正。

閱讀全文

與pythonxml地圖可視化相關的資料

熱點內容
arm查詢法的局限性和編譯流程 瀏覽:78
醒圖的文件夾叫什麼 瀏覽:998
php程序員北京 瀏覽:175
gcc編譯進程數據 瀏覽:653
手機上的文件夾是怎樣的 瀏覽:166
微雲群共享文件夾改變 瀏覽:534
程序員三年後能做什麼 瀏覽:449
分解運演算法則 瀏覽:876
python腳本執行sudo 瀏覽:721
安徽科海壓縮機 瀏覽:372
怎麼下載app里的講義 瀏覽:158
命令重啟伺服器 瀏覽:210
android電視root許可權獲取 瀏覽:249
解放戰爭pdf王樹增 瀏覽:685
python壓測app介面 瀏覽:953
抖音app怎麼推薦 瀏覽:100
歌庫伺服器能做其他什麼用途 瀏覽:95
安卓44虛擬機怎麼root 瀏覽:38
程序員瘦身c盤空間 瀏覽:243
dell伺服器溫度怎麼看 瀏覽:303