排序是計算機程序設計中的一種重要操作,它的功能是將一個數據元素的任意序列,重新排列成一個關鍵字有序的序列。那麼python列表排序演算法有哪些?本文主要為大家講述python中經常用的三種排序演算法:冒泡排序、插入排序和選擇排序。
1、冒泡排序
冒泡排序,Bubble
Sort,是一種簡單的排序演算法。它重復地遍歷要排序的數列,一次比較兩個元素,如果他們的順序錯誤就把他們交換過來。遍歷數列的工作是重復地進行直到沒有再需要交換,也就是說該數列已經排序完成。這個演算法的名字由來是因為越小的元素會經由交換慢慢浮到數列的頂端。
2、插入排序
插入排序,Insertion
Sort,是一種簡單直觀的排序演算法。它的工作原理是通過構建有序序列,對於未排序數據,在已排序序列中從後向前掃描,找到相應位置並插入。插入排序在實現上,在從後向前的掃描過程中,需要把已排序元素逐步向後挪位,為最新元素提供插入空間。
3、選擇排序
選擇排序,Selection
Sort,是一種簡單直觀的排序演算法。它的工作原理如下:首先在未排序序列中找到最小、最大元素,存放到排序序列的起始位置,然後再從剩餘未排序元素中繼續尋找最小、最大元素。放到已排序序列的末尾。以此類推,直到所有元素均排序完畢。
B. Python對數據進行排序-中英文
sort_values(by,axis=0,ascending=True,inplace=False,kind='quicksort',na_position='last')
參數說明:
by: 可以填入字元串或者字元串組成的列表。也就是說, 如果axis=0,那麼by="列名";如果axis=1,那麼by="行名"。
axis: {0 or 『index』, 1 or 『columns』}, default 0,意思就是如果 axis=0,就按照索引排序,即縱向排序;如果axis=1,則按列排序,即橫向排序。默認是axis=0 。
ascending: 輸入布爾型, True是升序 , False是降序 ,也可以可以是[True,False],即第一個欄位升序,第二個欄位降序 。
inplace : 輸入布爾型,是否用排序後的數據框替換現有的數據框
kind: 排序的方法,{『quicksort』, 『mergesort』, 『heapsort』},默認是使用『quicksort』。這個參數用的比較少,大家可以試一試。
na_position : {『first』, 『last』}, 缺失值的排序 ,也就說決定將缺失值放在數據的最前面還是最後面 。first是排在前面,last是排在後面,默認是用last 。
例子:
scores= pd.DataFrame([[87,56,85],[46,87,97],[34,65,86]],columns=['jack', 'rose', 'mike'])
scores
1.對『rose』這一列進行降序排序:
df_sc=scores.sort_values(by='rose',ascending=False)
df_sc
2.對第0行進行升序排序:
scores.sort_values(by=0,axis=1,ascending=True)
3.第1行進行升序,第0行進行降序:
scores.sort_values(by=[1,0],axis=1,ascending=[True,False]
4.觀察數據
data.head:
查看數據的前五行。
data.tail:
查看數據的後五行。
data.shape :
查看矩陣或數組的維數,或者是說數據表的結構(有幾行幾列)。
data.info :
查看數據的基本信息,如:數據類型、缺失值數量等。
#brand目標:中文-中英-英文
2.1 包含中文,純英文
for i in range(0,len(file1)):
result = re.compile(u'[\u4e00-\u9fa5]')
contents = file1['brand'][i]
match = result.search(contents)
if match:
file1.loc[i,['index1']]=0 #0為包含中文
else:
file1.loc[i,['index1']]=1 #1為純英文
2.1 包含英文,純中文
for i in range(0,len(file1)):
file1.loc[i,['index2']]=len(re.findall('[a-zA-Z]+', file1['brand'][i]) ) #0為純中文,1為包含英文