A. 什麼是數控加工工藝(我要概念啊)其主要內容是什麼
數控加工(numerical control machining),是指在數控機床上進行零件加工的一種工藝方法,數控機床加工與傳統機床加工的工藝規程從總體上說是一致的,但也發生了明顯的變化。用數字信息控制零件和刀具位移的機械加工方法。
它是解決零件品種多變、批量小、形狀復雜、精度高等問題和實現高效化和自動化加工的有效途徑。
一般來說數控加工工藝主要包括的內容如下:
1、 選擇並確定進行數控加工的零件及內容;
2、對零件圖紙進行數控加工的工藝分析;
3、數控加工的工藝設計;
4、對零件圖紙的數學處理;
5、編寫加工程序單;
6、按程序單製作控制介質;
7、程序的校驗與修改;
8、首件試加工與現場問題處理;
9、數控加工工藝文件的定型與歸檔。
(1)特殊編程工藝擴展閱讀:
主要特點
一、工序集中
數控機床一般帶有可以自動換刀的刀架、刀庫,換刀過程由程序控制自動進行,因此,鏈高工序比較集中。工序集棚納尺中帶來巨大的經濟效益:
1、減少機床佔地面積,節約廠房。
2、減少或沒有中間環節(如半成品的中間檢測、暫存搬運等),既省時間又省人力。
二、自動化
數控機床加工時,不需人工控制刀具,自動化程度高。帶來的好處很明顯。
1、對操作工人的要求降低:
一個普通機床的高級工,不是短時間內可以培養的,而一個不需編程的數控工培養時間極短(如數控車工需要一周即可,還會編寫簡單的加工程序)。並且,數控工在數控機床上加工出的零件比普通工在傳統機床上加工的零件精度要高,時間要省。
2、降低了工人的勞動強度:數控工人在加工過程中,大部分時間被排斥在加工過程之外,非常省力。
3、產品質量穩定:數控機床的加工自動化,免除了普通機床上工人的疲勞、粗心、估計等人為誤差,提高了產品的一致性。
4、加工效率高:數控茄歲機床的自動換刀等使加工過程緊湊,提高了勞動生產率。
B. 數控銑零件加工工藝及數控編程
和數控編程技術是最重要的技術之一,
本文主要對模具加工所使用的動模板進行CNC加工,採用西門子系統對動模板進行數控編程加工。首先是對工件進行加工工序的確定,並且進行工藝分析,裝夾方式的選擇,切削用量的確定。再對刀具進行了選擇。然後就工藝路線進行編程加工。
當前數控加工的重點發展方向是無圖化生產、單件高精度並行加工、少人化無人化加工,這就要求數控機床能滿足高速、高動態精度、高剛性、熱穩定性、高可靠性、網路化以及與之配套的控制系統,最重要的是模具三維型面加工特別注重機床的動態性能國內已有一些公司引進了高速銑床,並開始應用。國內機床廠陸續開發出一些准高速的銑床,並正開發高速加工機床。
數控技術是指用數字、文字和符號組成的數字指令來實現一台或多台機械設備動作控制的技術。它所控制的通常是位置、角度、速度等機械量和與機械能量流向有關的開關量。數控的產生依賴於數據載體和二進制形式數據運算的出現。1908年,穿孔的金屬薄片互換式數據載體問世;19世紀末,以紙為數據載體並具有輔助功能的控制系統被發明;1938年,香農在美國麻省理工學院進行了數據快速運算和傳輸,奠定了現代計算機,包括計算機數字控制系統的基礎。數控技術是與機床控制密切結合發展起來的。1952年,第一台數控機床問世,成為世界機械工業史上一件劃時代的事件,推動了自動化的發展。
數控機床是一種技術密集度及自動化程度很高的機電一體化加工設備,是綜合應用計算機、自動控制、自動檢測及精密加工精度高,質量容易保證,發展前景十分廣闊,因此掌握數控車床的加工編程技術尤為重要
.1數控機床的優點
數控機床採用了計算機數控( Computerized Nuinerically Control )系統,因此也稱為計算機數控機床或 CNC 機床。數控機床作為一種新型的自動化機床、在具有高自動程度的同時還具有廣泛的通用性。
這是因為數控機床都具有以下一些共同的優點:
(1)數控機床能縮短生產准備時間,增加切削加工時間的比率。最佳切削參數和最佳走刀路線的合理使用,能夠大大地縮短加工時間,提高生產率。
(2)數控機床按照程序自動加工,不需要人工干預,而且還可以利用軟體進行校正及補償。因此,使用數控機床進行生產,可以保證零件的加工精度。穩定產品質量。
(3)只要改變程序,就能改變數控機床刀具與工件之間的相對運動軌跡,就可以加工不同的零件,使數控加工具備了廣泛的適應性和較大的靈活性。從而能夠完成很多普通機床難以完成或者不能加工的、具有復雜型面的零件的加工。
(4)許多數控機床能夠實現生產加工過程中的自動換刀,使得零件一次性裝夾之後,數控機床就能完成零件的多個加工部位的加工,真正實現了一機多用,大節省了設備和廠房面積。生產者可以精確計算生產成本,並對生產進度進行合理的安排,從而在一事實上程度上可以加速資金的周轉,切實提高經濟效益。
(5)在一般情況下,數控機床在加工生產過程中不需要特別的專用夾具,普通的通用夾具就能滿足數控加工的要求。與普通機床相比,使用數控機床進行生產時,專用夾具設計製造和存放的費用可以大大的減少。
(6)運用數控機床進行生產,能夠大減輕工人的勞動強度。
1.2數控機床的發展趨勢
數控技術的應用不但給傳統製造業帶來了革命性的變化,使製造業成為工業化的象徵,而且隨著數控技術的不斷發展和應用領域的擴大,他對國計民生的一些重要行業(IT、汽車、輕工、醫療等)的發展起著越來越重要的作用,因為這些行業所需裝備的數字化已是現代發展的大趨勢。從目前世界上數控技術及其裝備發展的趨勢來看,其主要研究熱點有以下幾個方面:
1.2.1 高速、高精加工技術及裝備的新趨勢
效率、質量是先進製造技術的主體。高速、高精加工技術可極大地提高效率,提高產品的質量和檔次,縮短生產周期和提高市場競爭能力。為此日本先端技術研究會將其列為5大現代製造技術之一,國際生產工程學會(CIRP)將其確定為21世紀的中心研究方向之一。
在轎車工業領域,年產30萬輛的生產節拍是40秒/輛,而且多品種加工是轎車裝備必須解決的重點問題之一;在航空和宇航工業領域,其加工的零部件多為薄壁和薄筋,剛度很差,材料為鋁或鋁合金,只有在高切削速度和切削力很小的情況下,才能對這些筋、壁進行加工。近來採用大型整體鋁合金坯料「掏空」的方法來製造機翼、機身等大型零件來替代多個零件通過眾多的鉚釘、螺釘和其他聯結方式拼裝,使構件的強度、剛度和可靠性得到提高。這些都對加工裝備提出了高速、高精和高柔性的要求。
從EMO2001展會情況來看,高速加工中心進給速度可達80m/min,甚至更高,空運行速度可達100m/min左右。目前世界上許多汽車廠,包括我國的上海通用汽車公司,已經採用以高速加工中心組成的生產線部分替代組合機床。美國CINCINNATI公司的HyperMach機床進給速度最大達60m/min,快速為100m/min,加速度達2g,主軸轉速已達60 000r/min。加工一薄壁飛機零件,只用30min,而同樣的零件在一般高速銑床加工需3h,在普通銑床加工需8h;德國DMG公司的雙主軸車床的主軸速度及加速度分別達12*!000r/mm和1g。
在加工精度方面,近10年來,普通級數控機床的加工精度已由10μm提高到5μm,精密級加工中心則從3~5μm,提高到1~1.5μm,並且超精密加工精度已開始進入納米級(0.01μm)。
在可靠性方面,國外數控裝置的MTBF值已達6 000h以上,伺服系統的MTBF值達到30000h以上,表現出非常高的可靠性。
為了實現高速、高精加工,與之配套的功能部件如電主軸、直線電機得到了快速的發展,應用領域進一步擴大。
1.2 .2軸聯動加工和復合加工機床快速發展
採用5軸聯動對三維曲面零件的加工,可用刀具最佳幾何形狀進行切削,不僅光潔度高,而且效率也大幅度提高。一般認為,1台5軸聯動機床的效率可以等於2台3軸聯動機床,特別是使用立方氮化硼等超硬材料銑刀進行高速銑削淬硬鋼零件時,5軸聯動加工可比3軸聯動加工發揮更高的效益。但過去因5軸聯動數控系統、主機結構復雜等原因,其價格要比3軸聯動數控機床高出數倍,加之編程技術難度較大,制約了5軸聯動機床的發展。
當前由於電主軸的出現,使得實現5軸聯動加工的復合主軸頭結構大為簡化,其製造難度和成本大幅度降低,數控系統的價格差距縮小。因此促進了復合主軸頭類型5軸聯動機床和復合加工機床(含5面加工機床)的發展。
在EMO2001展會上,新日本工機的5面加工機床採用復合主軸頭,可實現4個垂直平面的加工和任意角度的加工,使得5面加工和5軸加工可在同一台機床上實現,還可實現傾斜面和倒錐孔的加工。德國DMG公司展出DMUVoution系列加工中心,可在一次裝夾下5面加工和5軸聯動加工,可由CNC系統控制或CAD/CAM直接或間接控制。
1.2.3 智能化、開放式、網路化成為當代數控系統發展的主要趨勢
21世紀的數控裝備將是具有一定智能化的系統,智能化的內容包括在數控系統中的各個方面:為追求加工效率和加工質量方面的智能化,如加工過程的自適應控制,工藝參數自動生成;為提高驅動性能及使用連接方便的智能化,如前饋控制、電機參數的自適應運算、自動識別負載自動選定模型、自整定等;簡化編程、簡化操作方面的智能化,如智能化的自動編程、智能化的人機界面等;還有智能診斷、智能監控方面的內容、方便系統的診斷及維修等。
網路化數控裝備是近兩年國際著名機床博覽會的一個新亮點。數控裝備的網路化將極大地滿足生產線、製造系統、製造企業對信息集成的需求,也是實現新的製造模式如敏捷製造、虛擬企業、全球製造的基礎單元。國內外一些著名數控機床和數控系統製造公司都在近兩年推出了相關的新概念和樣機,如在EMO2001展中,日本山崎馬扎克(Mazak)公司展出的「CyberProction Center」(智能生產控制中心,簡稱CPC);日本大隈(Okuma)機床公司展出「IT plaza」(信息技術廣場,簡稱IT廣場);德國西門子(Siemens)公司展出的Open Manufacturing Environment(開放製造環境,簡稱OME)等,反映了數控機床加工向網路化方向發展的趨勢。
1.2.4 重視新技術標准、規范的建立
如前所述,開放式數控系統有更好的通用性、柔性、適應性、擴展性,美國、歐共體和日本等國紛紛實施戰略發展計劃,並進行開放式體系結構數控系統規范(OMAC、OSACA、OSEC)的研究和制定,世界3個最大的經濟體在短期內進行了幾乎相同的科學計劃和規范的制定,預示了數控技術的一個新的變革時期的來臨。我國在2000年也開始進行中國的ONC數控系統的規范框架的研究和制定。
數控標準是製造業信息化發展的一種趨勢。數控技術誕生後的50年間的信息交換都是基於ISO6983標准,即採用G,M代碼描述如何(how)加工,其本質特徵是面向加工過程,顯然,他已越來越不能滿足現代數控技術高速發展的需要。為此,國際上正在研究和制定一種新的CNC系統標准ISO14649(STEP-NC),其目的是提供一種不依賴於具體系統的中性機制,能夠描述產品整個生命周期內的統一數據模型,從而實現整個製造過程,乃至各個工業領域產品信息的標准化。
STEP-NC的出現可能是數控技術領域的一次革命,對於數控技術的發展乃至整個製造業,將產生深遠的影響。首先,STEP-NC提出一種嶄新的製造理念,傳統的製造理念中,NC加工程序都集中在單個計算機上。而在新標准下,NC程序可以分散在互聯網上,這正是數控技術開放式、網路化發展的方向。其次,STEP-NC數控系統還可大大減少加工圖紙(約75%)、加工程序編制時間(約35%)和加工時間(約50%)。
目前,歐美國家非常重視STEP-NC的研究,歐洲發起了STEP-NC的IMS計劃(1999.1.1~2001.12.31)。參加這項計劃的有來自歐洲和日本的20個CAD/CAM/CAPP/CNC用戶、廠商和學術機構。美國的STEP Tools公司是全球范圍內製造業數據交換軟體的開發者,他已經開發了用作數控機床加工信息交換的超級模型(Super Model),其目標是用統一的規范描述所有加工過程。目前這種新的數據交換格式已經在配備了SIEMENS、FIDIA以及歐洲OSACA-NC數控系統的原型樣機上進行了驗證。
數控加工是對學生完成課程後,對機械加工工藝過程、數控加工工藝和夾具結構進一步了解的練習性的實踐環節,是學習深化與升華的重要過程,是對學生綜合素質與工程實踐能力的培養。
C. 詳解數控切削工藝工序設計和編程步驟是什麼
數控是指在數控機床上進行零件製造的一種工藝方法,數控機床與傳統機床的工藝規程從總體上說是一致的,區別是數控工藝用數字信息控制零件和刀具位移。要充分發揮數控機床的這一特點,必須在編程之前對工件進行工藝分析,根據具體條件選擇經濟、合理的工藝方案。下面簡單介紹一下數控切削工藝的設計流程:
一、數控切削工藝工序劃分
1、首先要熟讀圖樣
分折零件圖可知手柄輪廓是由一個圓錐台、一個柱面和三個圓弧連接曲面組成。確定工件坐標原點並汁算出每個折點的坐標以及曲線連接點的坐標。
2、按選擇的刀具劃分工序
以外圓右偏刀為主刀具,應盡可能完成所有部位,然後換切斷刀車錐面和切斷,並考慮切斷刀的寬度。這樣可以減少換刀次數壓縮行程時間。
3、按粗、精工劃分工序
若採用整個輪廓循環編程雖然簡單,但前幾個循環中的空程太多,不利於發揮數控切削的高效率。粗工切除大部分餘量後,再將其表面精車一遍,以保證精度和表面粗糙度的要求。
4、合理選擇切削用量
一般是在保證質量和刀具壽命的前提下,充分發揮機床性能和刀具切削性能,使切削效率最高、投入最低。粗工時多選用低的切削速度,較大的背吃刀量和進給量;精工時選用高的切削速度,較小的進給量。
二、數據編程注意事項
(1)依據工藝考慮進行編程,編程就是給出工步中的每一次走刀命令。首先確定工件的坐標原點,並計算出每個折折點的坐標以及曲線連接點的坐標。正確給出每一工步的起刀點,即某個部位時刀具的初始位置,起刀點的正確與否直接影響編程和表面輪廓的形成。
(2)按粗、精工和所選刀具劃分工序編程,粗工去除大部分餘量;精工提高表面質量,考慮切斷刀的實際刀尖,編程時應考慮刀寬的影響。
(3)在編程中不能直接使刀具直達工件表面,刀具與工件表面在零接觸下也不允許移動,這樣可有效避免刀具與工件接觸可能產生的碰撞,避免造成刀具劃傷工件表面或刀具磨損。
(4)准確對刀,數控編程是以刀尖點為參考沿零件輪廓的運動軌跡。首先通過正確對刀,使刀尖坐標與工件原點坐標重合。只有這樣才能保證刀具按編程運行後獲得正確的零件輪廓。
(5)輸入編程模擬模擬,模擬看到的是模擬刀尖按編程刻劃出的輪廓軌跡。而在切削過程中切削刃對工件是否造成干涉,在模擬中很難反應出來。模擬軌跡正確,最後加工出的工件輪廓不一定就完整,也就是說模擬可檢驗編程是否正確,而不能把過程中的過切干涉現象全部反映出來。
三、切削刀具的選擇
(1)目前常用的切削材料有高速鋼和硬質合金。由於高速鋼只能在較低溫度下保持其切削性能,因此不宜用於高速切削。硬質合金比高速鋼具有更好的耐熱性和耐磨性,因此硬質合金材料刀具更適合切削。
(2)在對高粘性、高塑性的零件時,要求刀具具有較高的耐磨性、耐熱性,並能在較高的溫度下保持優良的切削、斷屑性能,在保證刀具有足夠強度的前提下,應選用較大的前角,減小被切削金屬的塑性變形,降低切削力和切削溫度,同時使硬化層深度減小。
(3)在刀具塗層的選擇方面,宜選擇硬度高、抗粘結性和韌性好的塗層材料。超細的塗層工藝提高刀片的耐磨性,塗層表面光滑,減少摩擦,減少積屑瘤的產生,適用於良好工況下不銹鋼高速半精、精車削場合。
四、切削油的選擇
由於高速切削工藝的加工性較差,對切削油的冷卻、潤滑、滲透及清洗性能有更高的要求,常用的切削油切削過程中能在金屬表面形成高熔點硫化物,而且在高溫下不易破壞,具有良好的潤滑作用,並有一定的冷卻效果,一般用於高難度不銹鋼切削、鑽孔、鉸孔及攻絲等工藝。