Ⅰ python 數據可視化:Altair 使用全解析
ggplot2 是 R 的作圖工具包,可以使用非常簡單的語句實現非常復雜漂亮的效果。然而不幸的是,ggplot2 並不支持 Python。
在 Python 中,我們常使用 matplotlib 用於可視化圖形,matplotlib是一個很強大的可視化庫,但是它有著很嚴重的局限性。matplotlib 的使用非常靈活,這可以說的上是它的一個優點,但是當我們想為圖形加一個小小的功能的時候,它的繁瑣操作會讓我們舉步維艱。除此之外,matplotlib 的兩種界面(面向對象界面、基於狀態的界面)令人相當困惑,對於新手很不友好。即使對於多年使用 matplotlib 的人而言,他們也無法完全掌握這些操作。最後不得不說的是,用 matplotlib 製作互動式圖表是一件相當困難的事情。
Altair 是 Vega-Lite 的包裝器。Vega-Lite 是 JavaScript 的高級可視化庫,它最最重要的特點是,它的API是基於圖形語法的。
https://github.com/altair-viz/altair
什麼是圖形語法呢? 圖形語法聽起來有點像一個抽象的功能,值得注意的是,它是 Altair 和其他 Python 可視化庫之間最主要的區別。Altair 符合我們人類可視化數據的方式和習慣,Altair 只需要三個主要的參數:
基於以上三個參數,Altair 將會選擇合理的默認值來顯示我們的數據。
Altair 最讓人著迷的地方是,它能夠合理的選擇顏色。如果我們在 Encoding 中指定 變數類型為量化變數 ,那麼 Altair 將會使用連續的色標來著色(默認為 淺藍色-藍色-深藍色)。如果 變數類型指定為類別變數 ,那麼 Altair 會為每個類別賦予不同的顏色。(例如 紅色,黃色,藍色)
讓我們來看一個具體的例子,如下所示,我們組織了6個國家和它們所對應的人口數據,除此之外,還有相應的收入數據:
首先我們繪制每個國家的人口數據:
Ⅱ python繪制直方圖怎麼設置x軸和y軸的標簽
1、設置x軸的標簽
matplotlib中可以直接使用pyplot模塊的xlabel()函數設置x軸的標簽,xlabel()函數的語法格式如下所示:
xlabel(xlabel,fontdict=None,labelpad=None,**kwargs)
該函數各參數含義如下。
·xlabel:表示x軸標簽的文本。
·fontdict:表示控制標簽文本樣式的字典。
·labelpad:表示標簽與坐標軸邊框(包括刻度和刻度標簽)的距離。
此外,Axes對象使用set_xlabel()方法也可以設置x軸的標簽。
2、設置y軸的標簽
matplotlib中可以直接使用pyplot模塊的ylabel()函數設置y軸的標簽,ylabel()函數的語法格式如下所示:
ylabel(ylabel,fontdict=None,labelpad=None,**kwargs)
該函數的ylabel參數表示y軸標簽的文本,其餘參數與xlabel()函數的參數的含義相同。此處不再贅述。此外,Axes對象使用set_ylabel()方法也可以設置y軸的標簽。
假設現在有一個包含正弦曲線和餘弦曲線的圖表,該圖表中設置x軸和y軸的標簽,具體代碼如下。
.pyplotasplt plt.rcParams['font.sans-serif']=['SimHei']plt.rcParams['axes.unicode_minus']=Falsex=np.linspace(-np.pi,np.pi,256,endpoint=True)y1,y2=np.sin(x),np.cos(x)plt.plot(x,y1,x,y2)# 設置x軸和y軸的標簽plt.xlabel("x軸")plt.ylabel("y軸")plt.show()
運行程序,效果如圖3-3所示。
圖3-3 正弦和餘弦曲線圖——設置坐標軸標簽
Ⅲ 如何讓python可視化
簡介
在 Python 中,將數據可視化有多種選擇,正是因為這種多樣性,何時選用何種方案才變得極具挑戰性。本文包含了一些較為流行的工具以及如何使用它們來創建簡單的條形圖,我將使用下面幾種工具來完成繪圖示例:
Pandas
Seaborn
ggplot
Bokeh
pygal
Plotly
在示例中,我將使用 pandas 處理數據並將數據可視化。大多數案例中,使用上述工具時無需結合 pandas,但我認為 pandas 與可視化工具結合是非常普遍的現象,所以以這種方式開啟本文是很棒的。
什麼是 Matplotlib?
Matplotlib是眾多 Python 可視化包的鼻祖。其功能非常強大,同時也非常復雜。你可以使用 Matplotlib 去做任何你想做的事情,但是想要搞明白卻並非易事。我不打算展示原生的 Matplotlib 例子,因為很多工具(特別是 Pandas 和 Seaborn)是基於 Matplotlib 的輕量級封裝,如果你想了解更多關於 Matplotlib 的東西,在我的這篇文章—《simple graphing》中有幾個例子可供參考。
Matplotlib 令我最不滿的地方是它花費太多工作來獲得目視合理的圖表,但是在本文的某些示例中,我發現無需太多代碼就可以輕松獲得漂亮的可視化圖表。關於 Matplotlib 冗長特點的示例,可以參考這篇文章《ggplot》中的平面圖示例。
方法論
簡要說一下本文的方法論。我堅信只要讀者開始閱讀本文,他們將會指出使用這些工具的更好方法。我的目標並非在每個例子中創造出完全相同的圖表,而是花費大致相同的時間探索方法,從而在每個例子中以大體相同的方法將數據可視化。
在這個過程中,我所面臨的最大挑戰是格式化 x 軸和 y 軸以及基於某些大的標簽讓數據看起來合理,弄明白每種工具是如何格式化數據的也花費了我不少精力,我搞懂這些之後,剩餘的部分就相對簡單了。
另外還需要注意的一點是,條形圖可能是製作起來相對更簡單的圖表,使用這些工具可以製作出多種類型的圖表,但是我的示例更加側重的是簡易的格式化,而不是創新式的可視化。另外,由於標簽眾多,導致一些圖表占據了很多空間,所以我就擅自移除了它們,以保證文章長度可控。最後,我又調整了圖片尺寸,所以圖片的任何模糊現象都是縮放導致的問題,並不代表真實圖像的質量。
最後一點,我以一種嘗試使用 Excel 另外一款替代品的心態來實現示例。我認為我的示例在報告、展示、郵件或者靜態網頁中都更具說服力。如果你正在評估用於實時可視化數據的工具,亦或是通過其他途徑去分享,那麼其中的部分工具會提供很多我還未涉獵到的功能。
數據集
之前的文章描述了我們要處理的數據,我從每一類中抽取了更深一層的樣例,並選用了更詳細的元素。這份數據集包含了125行,但是為了保持簡潔,我只選用了前10行,完整的數據集可以在這里找到。
Ⅳ python數據可視化--可視化概述
數據可視化是python最常見的應用領域之一,數據可視化是藉助圖形化的手段將一組數據以圖形的形式表達出來,並利用數據分析和開發工具發現其中未知信息的數據處理過程。
在學術界有一句話廣為流傳,A picture worths thousand words,就是一圖值千言。在課堂上,我經常舉的例子就是大家在刷朋友圈的時候如果看到有人轉發一篇題目很吸引人的文章時,我們都會點擊進去,可能前幾段話會很認真地看,文章很長的時候後面就會一目十行,失去閱讀的興趣。
所以將數據、表格和文字等內容用圖表的形式表達出來,既能提高讀者閱讀的興趣,還能直觀表達想要表達的內容。
python可視化庫有很多,下面列舉幾個最常用的介紹一下。
matplotlib
它是python眾多數據可視化庫的鼻祖,也是最基礎的底層數據可視化第三方庫,語言風格簡單、易懂,特別適合初學者入門學習。
seaborn
Seaborn是在matplotlib的基礎上進行了更高級的API封裝,從而使得作圖更加容易,在大多數情況下使用seaborn能做出很具有吸引力的圖,而使用matplotlib就能製作具有更多特色的圖。應該把Seaborn視為matplotlib的補充,而不是替代物。
pyecharts
pyecharts是一款將python與echarts結合的強大的數據可視化工具,生成的圖表精巧,交互性良好,可輕松集成至 Flask,Sanic,Django 等主流 Web 框架,得到眾多開發者的認可。
bokeh
bokeh是一個面向web瀏覽器的互動式可視化庫,它提供了多功能圖形的優雅、簡潔的構造,並在大型數據集或流式數據集上提供高性能的交互性。
python這些可視化庫可以便捷、高效地生成豐富多彩的圖表,下面列舉一些常見的圖表。
柱形圖
條形圖
坡度圖
南丁格爾玫瑰圖
雷達圖
詞雲圖
散點圖
等高線圖
瀑布圖
相關系數圖
散點曲線圖
直方圖
箱形圖
核密度估計圖
折線圖
面積圖
日歷圖
餅圖
圓環圖
馬賽克圖
華夫餅圖
還有地理空間型等其它圖表,就不一一列舉了,下節開始我們先學習matplotlib這個最常用的可視化庫。
Ⅳ python可視化神器——pyecharts庫
無意中從今日頭條中看到的一篇文章,可以生成簡單的圖表。據說一些大數據開發們也是經常用類似的圖表庫,畢竟有現成的,改造下就行,誰會去自己造輪子呢。
pyecharts是什麼?
pyecharts 是一個用於生成 Echarts 圖表的類庫。Echarts 是網路開源的一個數據可視化 JS 庫。用 Echarts 生成的圖可視化效果非常棒, pyecharts 是為了與 Python 進行對接,方便在 Python 中直接使用數據生成圖 。使用pyecharts可以生成獨立的網頁,也可以在flask、django中集成使用。
安裝很簡單:pip install pyecharts
如需使用 Jupyter Notebook 來展示圖表,只需要調用自身實例即可,同時兼容 Python2 和 Python3 的 Jupyter Notebook 環境。所有圖表均可正常顯示,與瀏覽器一致的交互體驗,簡直不要太強大。
參考自pyecharts官方文檔: http://pyecharts.org
首先開始來繪制你的第一個圖表
使用 Jupyter Notebook 來展示圖表,只需要調用自身實例即可
add() 主要方法,用於添加圖表的數據和設置各種配置項
render() 默認將會在根目錄下生成一個 render.html 的文件,文件用瀏覽器打開。
使用主題
自 0.5.2+ 起,pyecharts 支持更換主體色系
使用 pyecharts-snapshot 插件
如果想直接將圖片保存為 png, pdf, gif 格式的文件,可以使用 pyecharts-snapshot。使用該插件請確保你的系統上已經安裝了 Nodejs 環境。
安裝 phantomjs $ npm install -g phantomjs-prebuilt
安裝 pyecharts-snapshot $ pip install pyecharts-snapshot
調用 render 方法 bar.render(path='snapshot.png') 文件結尾可以為 svg/jpeg/png/pdf/gif。請注意,svg 文件需要你在初始化 bar 的時候設置 renderer='svg'。
圖形繪制過程
基本上所有的圖表類型都是這樣繪制的:
chart_name = Type() 初始化具體類型圖表。
add() 添加數據及配置項。
render() 生成本地文件(html/svg/jpeg/png/pdf/gif)。
add() 數據一般為兩個列表(長度一致)。如果你的數據是字典或者是帶元組的字典。可利用 cast() 方法轉換。
多次顯示圖表
從 v0.4.0+ 開始,pyecharts 重構了渲染的內部邏輯,改善效率。推薦使用以下方式顯示多個圖表。如果使是 Numpy 或者 Pandas,可以參考這個示例
當然你也可以採用更加酷炫的方式,使用 Jupyter Notebook 來展示圖表,matplotlib 有的,pyecharts 也會有的
Note: 從 v0.1.9.2 版本開始,廢棄 render_notebook() 方法,現已採用更加 pythonic 的做法。直接調用本身實例就可以了。
比如這樣
還有這樣
如果使用的是自定義類,直接調用自定義類示例即可
圖表配置
圖形初始化
通用配置項
xyAxis:平面直角坐標系中的 x、y 軸。(Line、Bar、Scatter、EffectScatter、Kline)
dataZoom:dataZoom 組件 用於區域縮放,從而能自由關注細節的數據信息,或者概覽數據整體,或者去除離群點的影響。(Line、Bar、Scatter、EffectScatter、Kline、Boxplot)
legend:圖例組件。圖例組件展現了不同系列的標記(symbol),顏色和名字。可以通過點擊圖例控制哪些系列不顯示。
label:圖形上的文本標簽,可用於說明圖形的一些數據信息,比如值,名稱等。
lineStyle:帶線圖形的線的風格選項(Line、Polar、Radar、Graph、Parallel)
grid3D:3D笛卡爾坐標系組配置項,適用於 3D 圖形。(Bar3D, Line3D, Scatter3D)
axis3D:3D 笛卡爾坐標系 X,Y,Z 軸配置項,適用於 3D 圖形。(Bar3D, Line3D, Scatter3D)
visualMap:是視覺映射組件,用於進行『視覺編碼』,也就是將數據映射到視覺元素(視覺通道)
markLine&markPoint:圖形標記組件,用於標記指定的特殊數據,有標記線和標記點兩種。(Bar、Line、Kline)
tooltip:提示框組件,用於移動或點擊滑鼠時彈出數據內容
toolbox:右側實用工具箱
圖表詳細
Bar(柱狀圖/條形圖)
Bar3D(3D 柱狀圖)
Boxplot(箱形圖)
EffectScatter(帶有漣漪特效動畫的散點圖)
Funnel(漏斗圖)
Gauge(儀表盤)
Geo(地理坐標系)
GeoLines(地理坐標系線圖)
Graph(關系圖)
HeatMap(熱力圖)
Kline/Candlestick(K線圖)
Line(折線/面積圖)
Line3D(3D 折線圖)
Liquid(水球圖)
Map(地圖)
Parallel(平行坐標系)
Pie(餅圖)
Polar(極坐標系)
Radar(雷達圖)
Sankey(桑基圖)
Scatter(散點圖)
Scatter3D(3D 散點圖)
ThemeRiver(主題河流圖)
TreeMap(矩形樹圖)
WordCloud(詞雲圖)
用戶自定義
Grid 類:並行顯示多張圖
Overlap 類:結合不同類型圖表疊加畫在同張圖上
Page 類:同一網頁按順序展示多圖
Timeline 類:提供時間線輪播多張圖
統一風格
註:pyecharts v0.3.2以後,pyecharts 將不再自帶地圖 js 文件。如用戶需要用到地圖圖表,可自行安裝對應的地圖文件包。
地圖文件被分成了三個 Python 包,分別為:
全球國家地圖:
echarts-countries-pypkg
中國省級地圖:
echarts-china-provinces-pypkg
中國市級地圖:
echarts-china-cities-pypkg
直接使用python的pip安裝
但是這里大家一定要注意,安裝完地圖包以後一定要重啟jupyter notebook,不然是無法顯示地圖的。
顯示如下:
總得來說,這是一個非常強大的可視化庫,既可以集成在flask、Django開發中,也可以在做數據分析的時候單獨使用,實在是居家旅行的必備神器啊