❶ python如何爬取百度圖片
幾乎所有的網站都會有反爬機制,這就需要在爬取網頁時攜帶一些特殊參數,比如:user-agent、Cookie等等,可以在寫代碼的時候用工具將所有參數都帶上。
❷ linux下python怎麼寫爬蟲獲取圖片
跟linux有什麼關系,python是跨平台的,爬取圖片的代碼如下:
import urllib.requestimport osimport randomdef url_open(url):
req=urllib.request.Request(url) #為請求設置user-agent,使得程序看起來更像一個人類
req.add_header('User-Agent','Mozilla/5.0 (Windows NT 6.1; WOW64; rv:43.0) Gecko/20100101 Firefox/43.0') #代理IP,使用戶能以不同IP訪問,從而防止被伺服器發現
'''iplist=['1.193.162.123:8000','1.193.162.91:8000','1.193.163.32:8000']
proxy_support=urllib.request.ProxyHandler({'http':random.choice(iplist)})
opener=urllib.request.build_opener(proxy_support)
opener.addheaders=[('User-Agent','Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/42.0.2311.154 Safari/537.36 LBBROWSER')]
urllib.request.install_opener(opener)'''
response=urllib.request.urlopen(req)
html=response.read() return htmldef get_page(url):
html=url_open(url).decode('utf-8')
a=html.find('current-comment-page')+23
b=html.find(']',a) #print(html[a:b])
return html[a:b]def find_imgs(url):
html=url_open(url).decode('utf-8')
img_addrs=[]
a=html.find('img src=') while a!=-1:
b=html.find('.jpg',a,a+140) if b!=-1: if html[a+9]!='h':
img_addrs.append('http:'+html[a+9:b+4]) else:
img_addrs.append(html[a+9:b+4]) else:
b=a+9
a=html.find('img src=',b) for each in img_addrs:
print(each+'我的列印') return img_addrsdef save_imgs(folder,img_addrs):
for each in img_addrs: #print('one was saved')
filename=each.split('/')[-1] with open(filename,'wb') as f:
img=url_open(each)
f.write(img)def download_mm(folder='ooxx',pages=10):
os.mkdir(folder)
os.chdir(folder)
url=""
page_num=int(get_page(url)) for i in range(pages):
page_num=page_num-1
page_url=url+'page-'+str(page_num)+'#comments'
img_addrs=find_imgs(page_url)
save_imgs(folder,img_addrs)if __name__=='__main__':
download_mm()
完成
運行結果
❸ 如何用Python做爬蟲
在我們日常上網瀏覽網頁的時候,經常會看到一些好看的圖片,我們就希望把這些圖片保存下載,或者用戶用來做桌面壁紙,或者用來做設計的素材。
我們最常規的做法就是通過滑鼠右鍵,選擇另存為。但有些圖片滑鼠右鍵的時候並沒有另存為選項,還有辦法就通過就是通過截圖工具截取下來,但這樣就降低圖片的清晰度。好吧其實你很厲害的,右鍵查看頁面源代碼。
我們可以通過python來實現這樣一個簡單的爬蟲功能,把我們想要的代碼爬取到本地。下面就看看如何使用python來實現這樣一個功能。
❹ 如何用python實現爬取微博相冊所有圖片
三種方案:
1.直接用Python的requests庫直接爬取,不過這個需要手動做的事情就比較多了,基本上就看你的Python功力了
2.使用scrapy爬蟲框架,這個框架如果不熟悉的話只能自己先去了解下這個框架怎麼用
3.使用自動測試框架selemium模擬登錄操作,及圖片爬取,這個對於大多數會點Python編碼的人來說是最好的選擇了,他比較直觀的能看到怎麼去獲取數據
每種方案的前提都是你必須有一定基礎的編碼能力才行,不是隨便一個人就能用的
❺ 如何入門 Python 爬蟲
Python入門程度的基礎很簡單:
1、簡單的python語法,不需要什麼很深的東西
2、請求庫用法(requests、aiohttp等)
3、簡單的抓包/摳URL
4、xpath、正則表達式的使用,且能在不用生成工具的情況下自己寫出語句提取數據
以上四點已經足夠讓你爬一些簡單的網站了,但僅僅是這個程度而已的話,就還沒那些傻瓜式爬蟲工具強呢。你還需要JavaScript/Android/iOS逆向知識(核心,雜七雜八的那些這里不一一列舉,太多了),用於破加密請求參數、反爬等各種阻止你獲取到數據的東西。
❻ 想學習Python爬蟲,有什麼推薦的書或者教程嗎
Python爬蟲入門看什麼書好呢?我為你推薦一本書,手把手教你學Python。
這本書是一本實戰性的網路爬蟲秘笈,在本書中不僅講解了如何編寫爬蟲,還講解了流行的網路爬蟲的使用。而且這本色書的作者在Python領域有著非常深厚的積累,不僅精通Python網路爬蟲,而且在Python機器學習等領域都有著豐富的實戰經驗,所以說這本書是Python爬蟲入門人員必備的書籍。
這本書總共從三個維度講解了Python爬蟲入門,分別是:
技術維度:詳細講解了Python網路爬蟲實現的核心技術,包括網路爬蟲的工作原理、如何用urllib庫編寫網路爬蟲、爬蟲的異常處理、正則表達式、爬蟲中Cookie的使用、爬蟲的瀏覽器偽裝技術、定向爬取技術、反爬蟲技術,以及如何自己動手編寫網路爬蟲;
工具維度:以流行的Python網路爬蟲框架Scrapy為對象,詳細講解了Scrapy的功能使用、高級技巧、架構設計、實現原理,以及如何通過Scrapy來更便捷、高效地編寫網路爬蟲;
實戰維度:以實戰為導向,是本書的主旨,除了完全通過手動編程實現網路爬蟲和通過Scrapy框架實現網路爬蟲的實戰案例以外,本書還有博客爬取、圖片爬取、模擬登錄等多個綜合性的網路爬蟲實踐案例。
Python爬蟲入門可能有些人會覺得很難,但是我們只要選對老師至少找對一本正確的學習書籍,那麼Python爬蟲入門就真的沒有那麼難。
千鋒網站上有全套的Python教程,你可以去下載學習試試
❼ python怎麼輸入圖片
python導入圖片的方法:
一、直接從源圖片中導入(圖片位於images文件夾內)self.label1=QLabel(self)
self.label1.setPixmap(QPixmap(r"images/head.jpg"))
layout.addWidget(self.label1)
#或者 layout.addWidget(QLabel(self, pixmap=QPixmap("images/head.jpg")))
二、利用qrc資源導入
1、先寫qrc文件
images/head.jpg
images/body.jpg
2、將qrc文件轉化成py文件
轉化命令為:pyrcc5 res.qrc -o res_rc.py
3、導入res_rc.py:import res_rc
4、layout.addWidget(QLabel(self,pixmap=QPixmap(":/images/head.jpg")))
注意需要添加:/符號作為前綴。
❽ 如何使用python爬取到高清原圖
#-*-coding:utf8-*-
#2013.12.3619:41wnlo-c209
#抓取dbmei.com的圖片。
frombs4importBeautifulSoup
importos,sys,urllib2
#創建文件夾,昨天剛學會
path=os.getcwd() #獲取此腳本所在目錄
new_path=os.path.join(path,u'豆瓣妹子')
ifnotos.path.isdir(new_path):
os.mkdir(new_path)
defpage_loop(page=0):
url='http://www.dbmeizi.com/?p=%s'%page
content=urllib2.urlopen(url)
soup=BeautifulSoup(content)
my_girl=soup.find_all('img')
#加入結束檢測,寫的不好....
ifmy_girl==[]:
printu'已經全部抓取完畢'
sys.exit(0)
printu'開始抓取'
forgirlinmy_girl:
link=girl.get('src')
flink='http://www.dbmeizi.com/'+link
printflink
content2=urllib2.urlopen(flink).read()
withopen(u'豆瓣妹子'+'/'+flink[-11:],'wb')ascode:#在OSC上現學的
code.write(content2)
page=int(page)+1
printu'開始抓取下一頁'
print'the%spage'%page
page_loop(page)
page_loop()
print"~~~~~~~~~~~~~~~~~~~~~~~~~~END~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"
#為了避免雙擊的時候直接一閃退出,在最後面加了這么一句
raw_input("Press<Enter>ToQuit!")
❾ Python爬取數據後,如何將這些數據進行圖表繪制
爬取到的數據放到一個列表常量,變數在放到你紅框位置就好了
❿ 如何學習python爬蟲
爬蟲是入門Python最好的方式,沒有之一。 Python有很多應用的方向,比如後台開發、web開發、科學計算等等,但爬蟲對於初學者而
言更友好,原理簡單,幾行代碼就能實現基本的爬蟲,學習的過程更加平滑,你能體會更大的成就感。
掌握基本的爬蟲後,你再去學習Python數據分析、web開發甚至機器學習,都會更得心應手。因為這個過程中,Python基本語法、庫的
使用,以及如何查找文檔你都非常熟悉了。
對於小白來說,爬蟲可能是一件非常復雜、技術門檻很高的事情。比如有的人則認為先要掌握網頁的知識,遂 開始 HTMLCSS,結果入了前端的坑 ,瘁……
但掌握正確的方法,在短時間內做到能夠爬取主流網站的數據,其實非常容易實現,但建議你從 一開始就要有一個具體的目標。
在目標的驅動下,你的學習才會更加精準和高效。 那些所有你認為必須的前置知識,都是可以在完成目標的過程中學到的。 這里給你一
條平滑的、零基礎快速入門的學習路徑。
python學習網,免費的python學習網站,歡迎在線學習!
學習 Python 包並實現基本的爬蟲過程
大部分爬蟲都是按 「發送請求——獲得頁面——解析頁面——抽取並儲存內容」 這樣的流程來進行,這其實也是模擬了我們使用瀏覽器
獲取網頁信息的過程。
Python中爬蟲相關的包很多:urllib、requests、bs4、scrapy、pyspider 等, 建議從requests+Xpath 開始 ,requests 負責連接網
站,返回網頁,Xpath 用於解析網頁,便於抽取數據。
如果你用過 BeautifulSoup,會發現 Xpath 要省事不少,一層一層檢查元素代碼的工作,全都省略了。這樣下來基本套路都差不多, 一
般的靜態網站根本不在話下,豆瓣、糗事網路、騰訊新聞等基本上都可以上手了 。
掌握各種技巧,應對特殊網站的反爬措施
當然,爬蟲過程中也會經歷一些絕望啊,比如被網站封IP、比如各種奇怪的驗證碼、userAgent訪問限制、各種動態載入等等。
遇到這些反爬蟲的手段,當然還需要一些高級的技巧來應對,常規的比如 訪問頻率控制、使用代理IP池、抓包、驗證碼的OCR處理等等 。
往往網站在高效開發和反爬蟲之間會偏向前者,這也為爬蟲提供了空間,掌握這些應對反爬蟲的技巧,絕大部分的網站已經難不到你了。
學習 scrapy,搭建工程化的爬蟲
掌握前面的技術一般量級的數據和代碼基本沒有問題了,但是在遇到非常復雜的情況,可能仍然會力不從心,這個時候,強大的 scrapy
框架就非常有用了。
scrapy 是一個功能非常強大的爬蟲框架,它不僅能便捷地構建request,還有強大的 selector 能夠方便地解析 response,然而它最讓人
驚喜的還是它超高的性能,讓你可以將爬蟲工程化、模塊化。
學會 scrapy,你可以自己去搭建一些爬蟲框架,你就基本具備爬蟲工程師的思維了。
學習資料庫基礎,應對大規模數據存儲
爬回來的數據量小的時候,你可以用文檔的形式來存儲,一旦數據量大了,這就有點行不通了。所以掌握一種資料庫是必須的,學習目前
比較主流的 MongoDB 就OK。
MongoDB 可以方便你去存儲一些非結構化的數據 ,比如各種評論的文本,圖片的鏈接等等。你也可以利用PyMongo,更方便地在
Python中操作MongoDB。
因為這里要用到的資料庫知識其實非常簡單,主要是 數據如何入庫、如何進行提取 ,在需要的時候再學習就行。
分布式爬蟲,實現大規模並發採集
爬取基本數據已經不是問題了,你的瓶頸會集中到爬取海量數據的效率。這個時候,相信你會很自然地接觸到一個很厲害的名字: 分布
式爬蟲 。
分布式這個東西,聽起來很恐怖, 但其實就是利用多線程的原理讓多個爬蟲同時工作 ,需要你掌握 Scrapy + MongoDB + Redis 這三種工具 。
Scrapy 前面我們說過了,用於做基本的頁面爬取,MongoDB 用於存儲爬取的數據,Redis 則用來存儲要爬取的網頁隊列,也就是任務
隊列。
所以有些東西看起來很嚇人,但其實分解開來,也不過如此。當你能夠寫分布式的爬蟲的時候,那麼你可以去嘗試打造一些基本的爬蟲架
構了,實現一些更加自動化的數據獲取。
你看,這一條學習路徑下來,你已然可以成為老司機了,非常的順暢。所以在一開始的時候,盡量不要系統地去啃一些東西,找一個實際
的項目(開始可以從豆瓣、小豬這種簡單的入手),直接開始就好 。