㈠ 用python3怎麼解決這道題
#encoding=utf-8
importre
defchecklen(pwd):
returnlen(pwd)>=8
defcheckContainUpper(pwd):
pattern=re.compile('[A-Z]+')
match=pattern.findall(pwd)
ifmatch:
returnTrue
else:
returnFalse
defcheckContainNum(pwd):
pattern=re.compile('[0-9]+')
match=pattern.findall(pwd)
ifmatch:
returnTrue
else:
returnFalse
defcheckContainLower(pwd):
pattern=re.compile('[a-z]+')
match=pattern.findall(pwd)
ifmatch:
returnTrue
else:
returnFalse
defcheckSymbol(pwd):
pattern=re.compile('([^a-z0-9A-Z])+')
match=pattern.findall(pwd)
ifmatch:
returnTrue
else:
returnFalse
defcheckPassword(pwd):
#判斷密碼長度是否合法
lenOK=checklen(pwd)
#判斷是否包含大寫字母
upperOK=checkContainUpper(pwd)
#判斷是否包含小寫字母
lowerOK=checkContainLower(pwd)
#判斷是否包含數字
numOK=checkContainNum(pwd)
#判斷是否包含符號
symbolOK=checkSymbol(pwd)
print(lenOK)
print(upperOK)
print(lowerOK)
print(numOK)
print(symbolOK)
return()
defmain():
ifcheckPassword('Helloworld#123'):
print('檢測通過')
else:
print('檢測未通過')
if__name__=='__main__':
main()
純代碼寫就這樣,還需要修改一下,業務中一般用正則表示:
#-*-coding:utf8-*-
importre
whileTrue:
line=raw_input("input:")
iflen(line)==0:
print"NO"
else:
ifre.search('^(?![A-Z]+$)(?![a-z]+$)(?!d+$)(?![W_]+$)S{8,}$',line):
print'YES'
else:
print"NO"
㈡ python結果輸出不成功
你要輸出的是大於等於10000的四位數,判斷條件都寫錯了,還有列表添加元素最好用,append
,而不是讓列表直接加!
㈢ Python為什麼能擴展
Python 具有高可擴展性,存在許多使用 C 語言或 Fortran 編寫擴展的方法。必要時,Python 代碼可以直接將這些擴展作為子常式來調用。這部分討論用於構建擴展的一些主要編譯器(絕對不是完整列表)。
相關推薦:《Python基礎教程》
Cython
Cython(不同於 CPython)既是指一種語言,也是指一種編譯器。Cython 語言是添加了 C 語言語法的 Python 語言的超集。Cython 可以在代碼段或完整函數中顯式釋放 GIL。變數和類屬性上的 C 類型聲明以及對 C 函數的調用都使用 C 語法。其餘部分代碼則使用 Python 語法。通過這個混合的 Cython 代碼,Cython 編譯器可生成高效的 C 代碼。任何定期優化的 C/C++ 編譯器都可以編譯此 C 代碼,從而高度優化擴展的運行時代碼,性能接近於原生的 C 代碼性能。
Numba
Numba 是一個動態、即時 (JIT) 且可感知 NumPy 的 Python 編譯器。Numba 使用 LLVM 編譯器基礎架構,生成優化的機器代碼和從 Python 調用代碼的包裝器。與 Cython 不同,編碼使用常規的 Python 語言。Numba 可讀取來自裝飾器中所嵌入注釋的類型信息,並優化代碼。對於使用 NumPy 數據結構的程序,比如數組以及許多數學函數,它可以實現與 C 或 Fortran 語言類似的性能。NumPy 對線性代數和矩陣函數使用硬體加速,利用 LAPACK 和 BLAS 提供額外加速,大大提升了性能,參見 IBM 博客文章C、Julia、Python、Numba 和 Cython 在 LU 因式分解方面的速度比較。
除 CPU 以外,Numba 還能夠使用 GP-GPU 後端。Anaconda, Inc. 是 Python 某個主要發行版的幕後公司,該公司還開發了 Numba 和商業版的 Numba Pro。
Fortran to Python Interface Generator
Fortran to Python Interface Generator (F2Py) 起初為一個獨立的程序包,現在包含在 NumPy 中。F2Py 支持 Python 調用以 Fortran 編寫的數值常式,就好像它們是另一個 Python 模塊一樣。因為 Python 解釋器無法理解 Fortran 源代碼,所以 F2Py 以動態庫文件格式將 Fortran 編譯為本機代碼,這是一種共享對象,包含具有 Python 模塊介面的函數。因此,Python 可以直接將這些函數作為子常式來調用,以原生 Fortran 代碼的速度和性能來執行。
㈣ python3的sympy
print(「字元串」),5/2和5//2的結果是不同的5/2為2.5,5//2為2.
python2需要導入from_future_import division執行普通的除法。
1/2和1//2的結果0.5和0.
%號為取模運算。
乘方運算為2**3,-2**3和-(2**3)是等價的。
from sympy import*導入庫
x,y,z=symbols('x y z'),定義變數
init_printing(use_unicode=True)設置列印方式。
python的內部常量有pi,
函數simplify,simplify(sin(x)**2 + cos(x)**2)化簡結果為1,
simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))化簡結果為x-1。化簡伽馬函數。simplify(gamma(x)/gamma(x - 2))得(x-2)(x-1)。
expand((x + 1)**2)展開多項式。
expand((x + 1)*(x - 2) - (x - 1)*x)
因式分解。factor(x**2*z + 4*x*y*z + 4*y**2*z)得到z*(x + 2*y)**2
from_future_import division
x,y,z,t=symbols('x y z t')定義變數,
k, m, n = symbols('k m n', integer=True)定義三個整數變數。
f, g, h = symbols('f g h', cls=Function)定義的類型為函數。
factor_list(x**2*z + 4*x*y*z + 4*y**2*z)得到一個列表,表示因式的冪,(1, [(z, 1), (x + 2*y, 2)])
expand((cos(x) + sin(x))**2)展開多項式。
expr = x*y + x - 3 + 2*x**2 - z*x**2 + x**3,collected_expr = collect(expr, x)將x合並。將x元素按階次整合。
collected_expr.coeff(x, 2)直接取出變數collected_expr的x的二次冪的系數。
cancel()is more efficient thanfactor().
cancel((x**2 + 2*x + 1)/(x**2 + x))
,expr = (x*y**2 - 2*x*y*z + x*z**2 + y**2 - 2*y*z + z**2)/(x**2 - 1),cancel(expr)
expr = (4*x**3 + 21*x**2 + 10*x + 12)/(x**4 + 5*x**3 + 5*x**2 + 4*x),apart(expr)
asin(1)
trigsimp(sin(x)**2 + cos(x)**2)三角函數表達式化簡,
trigsimp(sin(x)**4 - 2*cos(x)**2*sin(x)**2 + cos(x)**4)
trigsimp(sin(x)*tan(x)/sec(x))
trigsimp(cosh(x)**2 + sinh(x)**2)雙曲函數。
三角函數展開,expand_trig(sin(x + y)),acos(x),cos(acos(x)),expand_trig(tan(2*x))
x, y = symbols('x y', positive=True)正數,a, b = symbols('a b', real=True)實數,z, t, c = symbols('z t c')定義變數的方法。
sqrt(x) == x**Rational(1, 2)判斷是否相等。
powsimp(x**a*x**b)冪函數的乘法,不同冪的乘法,必須先定義a和b。powsimp(x**a*y**a)相同冪的乘法。
powsimp(t**c*z**c),注意,powsimp()refuses to do the simplification if it is not valid.
powsimp(t**c*z**c, force=True)這樣的話就可以得到化簡過的式子。聲明強制進行化簡。
(z*t)**2,sqrt(x*y)
第一個展開expand_power_exp(x**(a + b)),expand_power_base((x*y)**a)展開,
expand_power_base((z*t)**c, force=True)強制展開。
powdenest((x**a)**b),powdenest((z**a)**b),powdenest((z**a)**b, force=True)
ln(x),x, y ,z= symbols('x y z', positive=True),n = symbols('n', real=True),
expand_log(log(x*y))展開為log(x) + log(y),但是python3沒有。這是因為需要將x定義為positive。這是必須的,否則不會被展開。expand_log(log(x/y)),expand_log(log(x**n))
As withpowsimp()andpowdenest(),expand_log()has aforceoption that can be used to ignore assumptions。
expand_log(log(z**2), force=True),強制展開。
logcombine(log(x) + log(y)),logcombine(n*log(x)),logcombine(n*log(z), force=True)。
factorial(n)階乘,binomial(n, k)等於c(n,k),gamma(z)伽馬函數。
hyper([1, 2], [3], z),
tan(x).rewrite(sin)得到用正弦表示的正切。factorial(x).rewrite(gamma)用伽馬函數重寫階乘。
expand_func(gamma(x + 3))得到,x*(x + 1)*(x + 2)*gamma(x),
hyperexpand(hyper([1, 1], [2], z)),
combsimp(factorial(n)/factorial(n - 3))化簡,combsimp(binomial(n+1, k+1)/binomial(n, k))化簡。combsimp(gamma(x)*gamma(1 - x))
自定義函數
def list_to_frac(l):
expr = Integer(0)
for i in reversed(l[1:]):
expr += i
expr = 1/expr
return l[0] + expr
list_to_frac([x, y, z])結果為x + 1/z,這個結果是錯誤的。
syms = symbols('a0:5'),定義syms,得到的結果為(a0, a1, a2, a3, a4)。
這樣也可以a0, a1, a2, a3, a4 = syms, 可能是我的操作錯誤 。發現python和自動縮進有關,所以一定看好自動縮進的距離。list_to_frac([1, 2, 3, 4])結果為43/30。
使用cancel可以將生成的分式化簡,frac = cancel(frac)化簡為一個分數線的分式。
(a0*a1*a2*a3*a4 + a0*a1*a2 + a0*a1*a4 + a0*a3*a4 + a0 + a2*a3*a4 + a2 + a4)/(a1*a2*a3*a4 + a1*a2 + a1*a4 + a3*a4 + 1)
a0, a1, a2, a3, a4 = syms定義a0到a4,frac = apart(frac, a0)可將a0提出來。frac=1/(frac-a0)將a0去掉取倒。frac = apart(frac, a1)提出a1。
help("moles"),模塊的含義,help("moles yourstr")模塊中包含的字元串的意思。,
help("topics"),import os.path + help("os.path"),help("list"),help("open")
# -*- coding: UTF-8 -*-聲明之後就可以在ide中使用中文注釋。
定義
l = list(symbols('a0:5'))定義列表得到[a0, a1, a2, a3, a4]
fromsympyimport*
x,y,z=symbols('x y z')
init_printing(use_unicode=True)
diff(cos(x),x)求導。diff(exp(x**2), x),diff(x**4, x, x, x)和diff(x**4, x, 3)等價。
diff(expr, x, y, 2, z, 4)求出表達式的y的2階,z的4階,x的1階導數。和diff(expr, x, y, y, z, 4)等價。expr.diff(x, y, y, z, 4)一步到位。deriv = Derivative(expr, x, y, y, z, 4)求偏導。但是不顯示。之後用deriv.doit()即可顯示
integrate(cos(x), x)積分。定積分integrate(exp(-x), (x, 0, oo))無窮大用2個oo表示。integrate(exp(-x**2-y**2),(x,-oo,oo),(y,-oo,oo))二重積分。print(expr)print的使用。
expr = Integral(log(x)**2, x),expr.doit()積分得到x*log(x)**2 - 2*x*log(x) + 2*x。
integ.doit()和integ = Integral((x**4 + x**2*exp(x) - x**2 - 2*x*exp(x) - 2*x -
exp(x))*exp(x)/((x - 1)**2*(x + 1)**2*(exp(x) + 1)), x)連用。
limit(sin(x)/x,x,0),not-a-number表示nan算不出來,limit(expr, x, oo),,expr = Limit((cos(x) - 1)/x, x, 0),expr.doit()連用。左右極限limit(1/x, x, 0, '+'),limit(1/x, x, 0, '-')。。
Series Expansion級數展開。expr = exp(sin(x)),expr.series(x, 0, 4)得到1 + x + x**2/2 + O(x**4),,x*O(1)得到O(x),,expr.series(x, 0, 4).removeO()將無窮小移除。exp(x-6).series(x,x0=6),,得到
-5 + (x - 6)**2/2 + (x - 6)**3/6 + (x - 6)**4/24 + (x - 6)**5/120 + x + O((x - 6)**6, (x, 6))最高到5階。
f=Function('f')定義函數變數和h=Symbol('h')和d2fdx2=f(x).diff(x,2)求2階,,as_finite_diff(dfdx)函數和as_finite_diff(d2fdx2,[-3*h,-h,2*h]),,x_list=[-3,1,2]和y_list=symbols('a b c')和apply_finite_diff(1,x_list,y_list,0)。
Eq(x, y),,solveset(Eq(x**2, 1), x)解出來x,當二式相等。和solveset(Eq(x**2 - 1, 0), x)等價。solveset(x**2 - 1, x)
solveset(x**2 - x, x)解,solveset(x - x, x, domain=S.Reals)解出來定義域。solveset(exp(x), x) # No solution exists解出EmptySet()表示空集。
等式形式linsolve([x + y + z - 1, x + y + 2*z - 3 ], (x, y, z))和矩陣法linsolve(Matrix(([1, 1, 1, 1], [1, 1, 2, 3])), (x, y, z))得到{(-y - 1, y, 2)}
A*x = b 形式,M=Matrix(((1,1,1,1),(1,1,2,3))),system=A,b=M[:,:-1],M[:,-1],linsolve(system,x,y,z),,solveset(x**3 - 6*x**2 + 9*x, x)解多項式。roots(x**3 - 6*x**2 + 9*x, x),得出,{3: 2, 0: 1},有2個3的重根,1個0根。solve([x*y - 1, x - 2], x, y)解出坐標。
f, g = symbols('f g', cls=Function)函數的定義,解微分方程diffeq = Eq(f(x).diff(x, x) - 2*f(x).diff(x) + f(x), sin(x))再和dsolve(diffeq,f(x))結合。得到Eq(f(x), (C1 + C2*x)*exp(x) + cos(x)/2),dsolve(f(x).diff(x)*(1 - sin(f(x))), f(x))解出來Eq(f(x) + cos(f(x)), C1),,
Matrix([[1,-1],[3,4],[0,2]]),,Matrix([1, 2, 3])列表示。M=Matrix([[1,2,3],[3,2,1]])
N=Matrix([0,1,1])
M*N符合矩陣的乘法。M.shape顯示矩陣的行列數。
M.row(0)獲取M的第0行。M.col(-1)獲取倒數第一列。
M.col_del(0)刪掉第1列。M.row_del(1)刪除第二行,序列是從0開始的。M = M.row_insert(1, Matrix([[0, 4]]))插入第二行,,M = M.col_insert(0, Matrix([1, -2]))插入第一列。
M+N矩陣相加,M*N,3*M,M**2,M**-1,N**-1表示求逆。M.T求轉置。
eye(3)單位。zeros(2, 3),0矩陣,ones(3, 2)全1,diag(1, 2, 3)對角矩陣。diag(-1, ones(2, 2), Matrix([5, 7, 5]))生成Matrix([
[-1, 0, 0, 0],
[ 0, 1, 1, 0],
[ 0, 1, 1, 0],
[ 0, 0, 0, 5],
[ 0, 0, 0, 7],
[ 0, 0, 0, 5]])矩陣。
Matrix([[1, 0, 1], [2, -1, 3], [4, 3, 2]])
一行一行顯示,,M.det()求行列式。M.rref()矩陣化簡。得到結果為Matrix([
[1, 0, 1, 3],
[0, 1, 2/3, 1/3],
[0, 0, 0, 0]]), [0, 1])。
M = Matrix([[1, 2, 3, 0, 0], [4, 10, 0, 0, 1]]),M.nullspace()
Columnspace
M.columnspace()和M = Matrix([[1, 2, 3, 0, 0], [4, 10, 0, 0, 1]])
M = Matrix([[3, -2, 4, -2], [5, 3, -3, -2], [5, -2, 2, -2], [5, -2, -3, 3]])和M.eigenvals()得到{3: 1, -2: 1, 5: 2},,This means thatMhas eigenvalues -2, 3, and 5, and that the eigenvalues -2 and 3 have algebraic multiplicity 1 and that the eigenvalue 5 has algebraic multiplicity 2.
P, D = M.diagonalize(),P得Matrix([
[0, 1, 1, 0],
[1, 1, 1, -1],
[1, 1, 1, 0],
[1, 1, 0, 1]]),,D為Matrix([
[-2, 0, 0, 0],
[ 0, 3, 0, 0],
[ 0, 0, 5, 0],
[ 0, 0, 0, 5]])
P*D*P**-1 == M返回為True。lamda = symbols('lamda')。
lamda = symbols('lamda')定義變數,p = M.charpoly(lamda)和factor(p)
expr = x**2 + x*y,srepr(expr)可以將表達式說明計演算法則,"Add(Pow(Symbol('x'), Integer(2)), Mul(Symbol('x'), Symbol('y')))"。。
x = symbols('x')和x = Symbol('x')是一樣的。srepr(x**2)得到"Pow(Symbol('x'), Integer(2))"。Pow(x, 2)和Mul(x, y)得到x**2。x*y
type(2)得到<class 'int'>,type(sympify(2))得到<class 'sympy.core.numbers.Integer'>..srepr(x*y)得到"Mul(Symbol('x'), Symbol('y'))"。。。
Add(Pow(x, 2), Mul(x, y))得到"Add(Mul(Integer(-1), Pow(Symbol('x'), Integer(2))), Mul(Rational(1, 2), sin(Mul(Symbol('x'), Symbol('y')))), Pow(Symbol('y'), Integer(-1)))"。。Pow函數為冪次。
expr = Add(x, x),expr.func。。Integer(2).func,<class 'sympy.core.numbers.Integer'>,,Integer(0).func和Integer(-1).func,,,expr = 3*y**2*x和expr.func得到<class 'sympy.core.mul.Mul'>,,expr.args將表達式分解為得到(3, x, y**2),,expr.func(*expr.args)合並。expr == expr.func(*expr.args)返回True。expr.args[2]得到y**2,expr.args[1]得到x,expr.args[0]得到3.。
expr.args[2].args得到(y, 2)。。y.args得到空括弧。Integer(2).args得到空括弧。
from sympy import *
E**(I*pi)+1,可以看出,I和E,pi已將在sympy內已定義。
x=Symbol('x'),,expand( E**(I*x) )不能展開,expand(exp(I*x),complex=True)可以展開,得到I*exp(-im(x))*sin(re(x)) + exp(-im(x))*cos(re(x)),,x=Symbol("x",real=True)將x定義為實數。再展開expand(exp(I*x),complex=True)得到。I*sin(x) + cos(x)。。
tmp = series(exp(I*x), x, 0, 10)和pprint(tmp)列印出來可讀性好,print(tmp)可讀性不好。。pprint將公式用更好看的格式列印出來,,pprint( series( cos(x), x, 0, 10) )
integrate(x*sin(x), x),,定積分integrate(x*sin(x), (x, 0, 2*pi))。。
用雙重積分求解球的體積。
x, y, r = symbols('x,y,r')和2 * integrate(sqrt(r*r-x**2), (x, -r, r))計算球的體積。計算不來,是因為sympy不知道r是大於0的。r = symbols('r', positive=True)這樣定義r即可。circle_area=2*integrate(sqrt(r**2-x**2),(x,-r,r))得到。circle_area=circle_area.subs(r,sqrt(r**2-x**2))將r替換。
integrate(circle_area,(x,-r,r))再積分即可。
expression.sub([(x,y),(y,x)])又換到原來的狀況了。
expression.subs(x, y),,將算式中的x替換成y。。
expression.subs({x:y,u:v}) : 使用字典進行多次替換。。
expression.subs([(x,y),(u,v)]) : 使用列表進行多次替換。。
㈤ python 因式分解哪裡錯了
n=int(input('pleaseenteranumber:'))
whilen>1:
foriinrange(2,n+1):
ifn%i==0:
n=n//i
ifn==1:
print(i)
else:
print(i,'*',end='')
break