1. BP神經網路——python簡單實現三層神經網路(Numpy)
我們將在Python中創建一個NeuralNetwork類,以訓練神經元以給出准確的預測。該課程還將具有其他幫助程序功能。
1. 應用Sigmoid函數
我們將使用 Sigmoid函數 (它繪制一條「 S」形曲線)作為神經網路的激活函數。
2. 訓練模型
這是我們將教神經網路做出准確預測的階段。每個輸入將具有權重(正或負)。
這意味著具有大量正權重或大量負權重的輸入將對結果輸出產生更大的影響。
我們最初是將每個權重分配給一個隨機數。
本文參考翻譯於此網站 —— 原文
2. 如何用python和scikit learn實現神經網路
1:神經網路演算法簡介
2:Backpropagation演算法詳細介紹
3:非線性轉化方程舉例
4:自己實現神經網路演算法NeuralNetwork
5:基於NeuralNetwork的XOR實例
6:基於NeuralNetwork的手寫數字識別實例
7:scikit-learn中BernoulliRBM使用實例
8:scikit-learn中的手寫數字識別實例
一:神經網路演算法簡介
1:背景
以人腦神經網路為啟發,歷史上出現過很多版本,但最著名的是backpropagation
2:多層向前神經網路(Multilayer Feed-Forward Neural Network)
3. 利用Python實現卷積神經網路的可視化
在本文中,將探討如何可視化卷積神經網路(CNN),該網路在計算機視覺中使用最為廣泛。首先了解CNN模型可視化的重要性,其次介紹可視化的幾種方法,同時以一個用例幫助讀者更好地理解模型可視化這一概念。
正如上文中介紹的癌症腫瘤診斷案例所看到的,研究人員需要對所設計模型的工作原理及其功能掌握清楚,這點至關重要。一般而言,一名深度學習研究者應該記住以下幾點:
1.1 理解模型是如何工作的
1.2 調整模型的參數
1.3 找出模型失敗的原因
1.4 向消費者/終端用戶或業務主管解釋模型做出的決定
2.可視化CNN模型的方法
根據其內部的工作原理,大體上可以將CNN可視化方法分為以下三類:
初步方法:一種顯示訓練模型整體結構的簡單方法
基於激活的方法:對單個或一組神經元的激活狀態進行破譯以了解其工作過程
基於梯度的方法:在訓練過程中操作前向傳播和後向傳播形成的梯度
下面將具體介紹以上三種方法,所舉例子是使用Keras深度學習庫實現,另外本文使用的數據集是由「識別數字」競賽提供。因此,讀者想復現文中案例時,請確保安裝好Kears以及執行了這些步驟。
研究者能做的最簡單的事情就是繪制出模型結構圖,此外還可以標注神經網路中每層的形狀及參數。在keras中,可以使用如下命令完成模型結構圖的繪制:
model.summary()_________________________________________________________________Layer (type) Output Shape Param #
=================================================================conv2d_1 (Conv2D) (None, 26, 26, 32) 320_________________________________________________________________conv2d_2 (Conv2D) (None, 24, 24, 64) 18496_________________________________________________________________max_pooling2d_1 (MaxPooling2 (None, 12, 12, 64) 0_________________________________________________________________dropout_1 (Dropout) (None, 12, 12, 64) 0_________________________________________________________________flatten_1 (Flatten) (None, 9216) 0_________________________________________________________________dense_1 (Dense) (None, 128) 1179776_________________________________________________________________dropout_2 (Dropout) (None, 128) 0_________________________________________________________________preds (Dense) (None, 10) 1290
=================================================================Total params: 1,199,882Trainable params: 1,199,882Non-trainable params: 0
還可以用一個更富有創造力和表現力的方式呈現模型結構框圖,可以使用keras.utils.vis_utils函數完成模型體系結構圖的繪制。
另一種方法是繪制訓練模型的過濾器,這樣就可以了解這些過濾器的表現形式。例如,第一層的第一個過濾器看起來像:
top_layer = model.layers[0]plt.imshow(top_layer.get_weights()[0][:, :, :, 0].squeeze(), cmap='gray')
一般來說,神經網路的底層主要是作為邊緣檢測器,當層數變深時,過濾器能夠捕捉更加抽象的概念,比如人臉等。
為了理解神經網路的工作過程,可以在輸入圖像上應用過濾器,然後繪制其卷積後的輸出,這使得我們能夠理解一個過濾器其特定的激活模式是什麼。比如,下圖是一個人臉過濾器,當輸入圖像是人臉圖像時候,它就會被激活。
from vis.visualization import visualize_activation
from vis.utils import utils
from keras import activations
from matplotlib import pyplot as plt
%matplotlib inline
plt.rcParams['figure.figsize'] = (18, 6)
# Utility to search for layer index by name.
# Alternatively we can specify this as -1 since it corresponds to the last layer.
layer_idx = utils.find_layer_idx(model, 'preds')
# Swap softmax with linear
model.layers[layer_idx].activation = activations.linear
model = utils.apply_modifications(model)
# This is the output node we want to maximize.filter_idx = 0
img = visualize_activation(model, layer_idx, filter_indices=filter_idx)
plt.imshow(img[..., 0])
同理,可以將這個想法應用於所有的類別,並檢查它們的模式會是什麼樣子。
for output_idx in np.arange(10):
# Lets turn off verbose output this time to avoid clutter and just see the output.
img = visualize_activation(model, layer_idx, filter_indices=output_idx, input_range=(0., 1.))
plt.figure()
plt.title('Networks perception of {}'.format(output_idx))
plt.imshow(img[..., 0])
在圖像分類問題中,可能會遇到目標物體被遮擋,有時候只有物體的一小部分可見的情況。基於圖像遮擋的方法是通過一個灰色正方形系統地輸入圖像的不同部分並監視分類器的輸出。這些例子清楚地表明模型在場景中定位對象時,若對象被遮擋,其分類正確的概率顯著降低。
為了理解這一概念,可以從數據集中隨機抽取圖像,並嘗試繪制該圖的熱圖(heatmap)。這使得我們直觀地了解圖像的哪些部分對於該模型而言的重要性,以便對實際類別進行明確的區分。
def iter_occlusion(image, size=8):
# taken from https://www.kaggle.com/blargl/simple-occlusion-and-saliency-maps
occlusion = np.full((size * 5, size * 5, 1), [0.5], np.float32)
occlusion_center = np.full((size, size, 1), [0.5], np.float32)
occlusion_padding = size * 2
# print('padding...')
image_padded = np.pad(image, ( \ (occlusion_padding, occlusion_padding), (occlusion_padding, occlusion_padding), (0, 0) \ ), 'constant', constant_values = 0.0)
for y in range(occlusion_padding, image.shape[0] + occlusion_padding, size):
for x in range(occlusion_padding, image.shape[1] + occlusion_padding, size):
tmp = image_padded.()
tmp[y - occlusion_padding:y + occlusion_center.shape[0] + occlusion_padding, \
x - occlusion_padding:x + occlusion_center.shape[1] + occlusion_padding] \ = occlusion
tmp[y:y + occlusion_center.shape[0], x:x + occlusion_center.shape[1]] = occlusion_center yield x - occlusion_padding, y - occlusion_padding, \
tmp[occlusion_padding:tmp.shape[0] - occlusion_padding, occlusion_padding:tmp.shape[1] - occlusion_padding]i = 23 # for exampledata = val_x[i]correct_class = np.argmax(val_y[i])
# input tensor for model.predictinp = data.reshape(1, 28, 28, 1)# image data for matplotlib's imshowimg = data.reshape(28, 28)
# occlusionimg_size = img.shape[0]
occlusion_size = 4print('occluding...')heatmap = np.zeros((img_size, img_size), np.float32)class_pixels = np.zeros((img_size, img_size), np.int16)
from collections import defaultdict
counters = defaultdict(int)for n, (x, y, img_float) in enumerate(iter_occlusion(data, size=occlusion_size)):
X = img_float.reshape(1, 28, 28, 1)
out = model.predict(X)
#print('#{}: {} @ {} (correct class: {})'.format(n, np.argmax(out), np.amax(out), out[0][correct_class]))
#print('x {} - {} | y {} - {}'.format(x, x + occlusion_size, y, y + occlusion_size))
heatmap[y:y + occlusion_size, x:x + occlusion_size] = out[0][correct_class]
class_pixels[y:y + occlusion_size, x:x + occlusion_size] = np.argmax(out)
counters[np.argmax(out)] += 1
正如之前的坦克案例中看到的那樣,怎麼才能知道模型側重於哪部分的預測呢?為此,可以使用顯著圖解決這個問題。顯著圖首先在這篇文章中被介紹。
使用顯著圖的概念相當直接——計算輸出類別相對於輸入圖像的梯度。這應該告訴我們輸出類別值對於輸入圖像像素中的微小變化是怎樣變化的。梯度中的所有正值告訴我們,像素的一個小變化會增加輸出值。因此,將這些梯度可視化可以提供一些直觀的信息,這種方法突出了對輸出貢獻最大的顯著圖像區域。
class_idx = 0indices = np.where(val_y[:, class_idx] == 1.)[0]
# pick some random input from here.idx = indices[0]
# Lets sanity check the picked image.from matplotlib import pyplot as plt%matplotlib inline
plt.rcParams['figure.figsize'] = (18, 6)plt.imshow(val_x[idx][..., 0])
from vis.visualization import visualize_saliency
from vis.utils import utilsfrom keras import activations# Utility to search for layer index by name.
# Alternatively we can specify this as -1 since it corresponds to the last layer.
layer_idx = utils.find_layer_idx(model, 'preds')
# Swap softmax with linearmodel.layers[layer_idx].activation = activations.linear
model = utils.apply_modifications(model)grads = visualize_saliency(model, layer_idx, filter_indices=class_idx, seed_input=val_x[idx])
# Plot with 'jet' colormap to visualize as a heatmap.plt.imshow(grads, cmap='jet')
# This corresponds to the Dense linear layer.for class_idx in np.arange(10):
indices = np.where(val_y[:, class_idx] == 1.)[0]
idx = indices[0]
f, ax = plt.subplots(1, 4)
ax[0].imshow(val_x[idx][..., 0])
for i, modifier in enumerate([None, 'guided', 'relu']):
grads = visualize_saliency(model, layer_idx, filter_indices=class_idx,
seed_input=val_x[idx], backprop_modifier=modifier)
if modifier is None:
modifier = 'vanilla'
ax[i+1].set_title(modifier)
ax[i+1].imshow(grads, cmap='jet')
類別激活映射(CAM)或grad-CAM是另外一種可視化模型的方法,這種方法使用的不是梯度的輸出值,而是使用倒數第二個卷積層的輸出,這樣做是為了利用存儲在倒數第二層的空間信息。
from vis.visualization import visualize_cam
# This corresponds to the Dense linear layer.for class_idx in np.arange(10):
indices = np.where(val_y[:, class_idx] == 1.)[0]
idx = indices[0]f, ax = plt.subplots(1, 4)
ax[0].imshow(val_x[idx][..., 0])
for i, modifier in enumerate([None, 'guided', 'relu']):
grads = visualize_cam(model, layer_idx, filter_indices=class_idx,
seed_input=val_x[idx], backprop_modifier=modifier)
if modifier is None:
modifier = 'vanilla'
ax[i+1].set_title(modifier)
ax[i+1].imshow(grads, cmap='jet')
本文簡單說明了CNN模型可視化的重要性,以及介紹了一些可視化CNN網路模型的方法,希望對讀者有所幫助,使其能夠在後續深度學習應用中構建更好的模型。 免費視頻教程:www.mlxs.top
4. 從零開始用Python構建神經網路
從零開始用Python構建神經網路
動機:為了更加深入的理解深度學習,我們將使用 python 語言從頭搭建一個神經網路,而不是使用像 Tensorflow 那樣的封裝好的框架。我認為理解神經網路的內部工作原理,對數據科學家來說至關重要。
這篇文章的內容是我的所學,希望也能對你有所幫助。
神經網路是什麼?
介紹神經網路的文章大多數都會將它和大腦進行類比。如果你沒有深入研究過大腦與神經網路的類比,那麼將神經網路解釋為一種將給定輸入映射為期望輸出的數學關系會更容易理解。
神經網路包括以下組成部分
? 一個輸入層,x
? 任意數量的隱藏層
? 一個輸出層,?
? 每層之間有一組權值和偏置,W and b
? 為隱藏層選擇一種激活函數,σ。在教程中我們使用 Sigmoid 激活函數
下圖展示了 2 層神經網路的結構(注意:我們在計算網路層數時通常排除輸入層)
2 層神經網路的結構
用 Python 可以很容易的構建神經網路類
訓練神經網路
這個網路的輸出 ? 為:
你可能會注意到,在上面的等式中,輸出 ? 是 W 和 b 函數。
因此 W 和 b 的值影響預測的准確率. 所以根據輸入數據對 W 和 b 調優的過程就被成為訓練神經網路。
每步訓練迭代包含以下兩個部分:
? 計算預測結果 ?,這一步稱為前向傳播
? 更新 W 和 b,,這一步成為反向傳播
下面的順序圖展示了這個過程:
前向傳播
正如我們在上圖中看到的,前向傳播只是簡單的計算。對於一個基本的 2 層網路來說,它的輸出是這樣的:
我們在 NeuralNetwork 類中增加一個計算前向傳播的函數。為了簡單起見我們假設偏置 b 為0:
但是我們還需要一個方法來評估預測結果的好壞(即預測值和真實值的誤差)。這就要用到損失函數。
損失函數
常用的損失函數有很多種,根據模型的需求來選擇。在本教程中,我們使用誤差平方和作為損失函數。
誤差平方和是求每個預測值和真實值之間的誤差再求和,這個誤差是他們的差值求平方以便我們觀察誤差的絕對值。
訓練的目標是找到一組 W 和 b,使得損失函數最好小,也即預測值和真實值之間的距離最小。
反向傳播
我們已經度量出了預測的誤差(損失),現在需要找到一種方法來傳播誤差,並以此更新權值和偏置。
為了知道如何適當的調整權值和偏置,我們需要知道損失函數對權值 W 和偏置 b 的導數。
回想微積分中的概念,函數的導數就是函數的斜率。
梯度下降法
如果我們已經求出了導數,我們就可以通過增加或減少導數值來更新權值 W 和偏置 b(參考上圖)。這種方式被稱為梯度下降法。
但是我們不能直接計算損失函數對權值和偏置的導數,因為在損失函數的等式中並沒有顯式的包含他們。因此,我們需要運用鏈式求導發在來幫助計算導數。
鏈式法則用於計算損失函數對 W 和 b 的導數。注意,為了簡單起見。我們只展示了假設網路只有 1 層的偏導數。
這雖然很簡陋,但是我們依然能得到想要的結果—損失函數對權值 W 的導數(斜率),因此我們可以相應的調整權值。
現在我們將反向傳播演算法的函數添加到 Python 代碼中
為了更深入的理解微積分原理和反向傳播中的鏈式求導法則,我強烈推薦 3Blue1Brown 的如下教程:
Youtube:https://youtu.be/tIeHLnjs5U8
整合並完成一個實例
既然我們已經有了包括前向傳播和反向傳播的完整 Python 代碼,那麼就將其應用到一個例子上看看它是如何工作的吧。
神經網路可以通過學習得到函數的權重。而我們僅靠觀察是不太可能得到函數的權重的。
讓我們訓練神經網路進行 1500 次迭代,看看會發生什麼。 注意觀察下面每次迭代的損失函數,我們可以清楚地看到損失函數單調遞減到最小值。這與我們之前介紹的梯度下降法一致。
讓我們看看經過 1500 次迭代後的神經網路的最終預測結果:
經過 1500 次迭代訓練後的預測結果
我們成功了!我們應用前向和方向傳播演算法成功的訓練了神經網路並且預測結果收斂於真實值。
注意預測值和真實值之間存在細微的誤差是允許的。這樣可以防止模型過擬合並且使得神經網路對於未知數據有著更強的泛化能力。
下一步是什麼?
幸運的是我們的學習之旅還沒有結束,仍然有很多關於神經網路和深度學習的內容需要學習。例如:
? 除了 Sigmoid 以外,還可以用哪些激活函數
? 在訓練網路的時候應用學習率
? 在面對圖像分類任務的時候使用卷積神經網路
我很快會寫更多關於這個主題的內容,敬請期待!
最後的想法
我自己也從零開始寫了很多神經網路的代碼
雖然可以使用諸如 Tensorflow 和 Keras 這樣的深度學習框架方便的搭建深層網路而不需要完全理解其內部工作原理。但是我覺得對於有追求的數據科學家來說,理解內部原理是非常有益的。
這種練習對我自己來說已成成為重要的時間投入,希望也能對你有所幫助
5. 使用python在GPU上構建和訓練卷積神經網路
我將對代碼進行補充演練,以構建在數據集上訓練的任何類型的圖像分類器。在這個例子中,我將使用花卉數據集,其中包括102種不同類型的花。需要數據集和代碼都可以私信我。
Pytorch是機器學習和Python上的免費軟體包,非常易於使用。語法模擬numpy,因此,如果你在python中有一些科學計算經驗,那麼會相當有用的。賀寬只需幾行代碼,就可以下載預先訓練的數據集,使用定義的變換對圖像進叢襲行標准化,然後運行訓練。
創建和擴充數據集
為了增加數據集,我使用' google_images_download'API 從互聯網上下載了相關圖像。顯然,您可以使用此API不僅可以擴充現有數據集,還可以從頭開始創建自己的數據集。
確保從圖像中挑選出異常值(損壞的文件或偶然出現的無關圖像)。
圖像標准化
為了使圖像具有相同的大小和像素變化,可以使用pytorch的transfors模塊:
轉移學習
從頭開始訓練的模型可能不是最明智的選擇,因為有許多網路可用於各種數據集。簡單地說,像edge-和其他簡單形狀檢測器等低級特徵對於不同的模型是相似的,即使clasificators是針對不同目的進行訓練的。在本項目中,我使用了一個預訓練網路Resnet152,只有最後一個完全連接的層重新用於新任務,即使這樣也會產生相當好的效果。
在這里,我將除最後一層之外的所有層都設置為具有固定權重(requires_grad = False),因此只有最後層中的參數將通過梯度下降進行更新。
訓練模型
下面介紹一下進行訓練的函數:
如何獲得GPU?
當然,對CPU的訓練太慢了。根據我自己的經驗,在GPU僅需要一個小時就可以完成12次訓練周期,但是在CPU上相同數量的訓練周期可能需要花費大約15個小時。
如果您沒有本地可用的GPU,則可以考慮使用雲GPU。為了加速禪鄭亮CNN的訓練,我使用了floydhub(www.floydhub.com)上提供的雲GPU 。
這項服務非常指的使用:總有很好的文檔和大量的提示,所以你會很清楚的知道下一步需要如何去做。在floydhub上對於使用GPU的收費也是可以接受的。
首先,需要將數據集上傳到伺服器
然後,需要創建項目。需要在計算機上安裝floydhub客戶端,將數據集上載到其網站並在終端中運行以下命令:
其中'username'是您的登錄名,'i'是數據集所在的文件夾。
這樣子在訓練網路時就會很輕鬆了
結果和改進想法
得到的模型在數據集上訓練了1.5小時,並在驗證數據集上達到了95%的准確度。
6. Hopfield神經網路用python實現講解
神經網路結構具有以下三個特點:
神經元之間全連接,並且為單層神經網路。
每個神經元既是輸入又是輸出,導致得到的權重矩陣相對稱,故可節約計算量。
在輸入的激勵下,其輸出會產生不斷的狀態變化,這個反饋過程會一直反復進行。假如Hopfield神經網路是一個收斂的穩定網路,則這個反饋與迭代的計算過程所產生的變化越來越小,一旦達到了穩定的平衡狀態,Hopfield網路就會輸出一個穩定的恆值。
Hopfield網路可以儲存一組平衡點,使得當給定網路一組初始狀態時,網路通過自行運行而最終收斂於這個設計的平衡點上。當然,根據熱力學上,平衡狀態分為stable state和metastable state, 這兩種狀態在網路的收斂過程中都是非常可能的。
為遞歸型網路,t時刻的狀態與t-1時刻的輸出狀態有關。之後的神經元更新過程也採用的是非同步更新法(Asynchronous)。
Hopfield神經網路用python實現