① python怎麼生成三維數
importnumpyasnp
a=np.array([1,2,3],dtype=int)#創建1*3維數組array([1,2,3])
type(a)#numpy.ndarray類型
a.shape#維數信息(3L,)
a.dtype.name#'int32'
a.size#元素個數:3
a.itemsize#每個元素所佔用的位元組數目:4
b=np.array([[1,2,3],[4,5,6]],dtype=int)#創建2*3維數組array([[1,2,3],[4,5,6]])
b.shape#維數信息(2L,3L)
b.size#元素個數:6
b.itemsize#每個元素所佔用的位元組數目:4
c=np.array([[1,2,3],[4,5,6]],dtype='int16')#創建2*3維數組array([[1,2,3],[4,5,6]],dtype=int16)
c.shape#維數信息(2L,3L)
c.size#元素個數:6
c.itemsize#每個元素所佔用的位元組數目:2
c.ndim#維數
d=np.array([[1,2,3],[4,5,6]],dtype=complex)#復數二維數組
d.itemsize#每個元素所佔用的位元組數目:16
d.dtype.name#元素類型:'complex128'
importnumpyasnp
a=np.array([1,2,3],dtype=int)#創建1*3維數組array([1,2,3])
type(a)#numpy.ndarray類型
a.shape#維數信息(3L,)
a.dtype.name#'int32'
a.size#元素個數:3
a.itemsize#每個元素所佔用的位元組數目:4
b=np.array([[1,2,3],[4,5,6]],dtype=int)#創建2*3維數組array([[1,2,3],[4,5,6]])
b.shape#維數信息(2L,3L)
b.size#元素個數:6
b.itemsize#每個元素所佔用的位元組數目:4
c=np.array([[1,2,3],[4,5,6]],dtype='int16')#創建2*3維數組array([[1,2,3],[4,5,6]],dtype=int16)
c.shape#維數信息(2L,3L)
c.size#元素個數:6
c.itemsize#每個元素所佔用的位元組數目:2
c.ndim#維數
d=np.array([[1,2,3],[4,5,6]],dtype=complex)#復數二維數組
d.itemsize#每個元素所佔用的位元組數目:16
d.dtype.name#元素類型:'complex128'
a1=np.zeros((3,4))#創建3*4全零二維數組
輸出:
array([[0.,0.,0.,0.],
[0.,0.,0.,0.],
[0.,0.,0.,0.]])
a1.dtype.name#元素類型:'float64'
a1.size#元素個數:12
a1.itemsize#每個元素所佔用的位元組個數:8
a2=np.ones((2,3,4),dtype=np.int16)#創建2*3*4全1三維數組
a2=np.ones((2,3,4),dtype='int16')#創建2*3*4全1三維數組
輸出:
array([[[1,1,1,1],
[1,1,1,1],
[1,1,1,1]],
[[1,1,1,1],
[1,1,1,1],
[1,1,1,1]]],dtype=int16)
a3=np.empty((2,3))#創建2*3的未初始化二維數組
輸出:(mayvary)
array([[1.,2.,3.],
[4.,5.,6.]])
a4=np.arange(10,30,5)#初始值10,結束值:30(不包含),步長:5
輸出:array([10,15,20,25])
a5=np.arange(0,2,0.3)#初始值0,結束值:2(不包含),步長:0.2
輸出:array([0.,0.3,0.6,0.9,1.2,1.5,1.8])
fromnumpyimportpi
np.linspace(0,2,9)#初始值0,結束值:2(包含),元素個數:9
輸出:
array([0.,0.25,0.5,0.75,1.,1.25,1.5,1.75,2.])
x=np.linspace(0,2*pi,9)
輸出:
array([0.,0.78539816,1.57079633,2.35619449,3.14159265,
3.92699082,4.71238898,5.49778714,6.28318531])
a=np.arange(6)
輸出:
array([0,1,2,3,4,5])
b=np.arange(12).reshape(4,3)
輸出:
array([[0,1,2],
[3,4,5],
[6,7,8],
[9,10,11]])
c=np.arange(24).reshape(2,3,4)
輸出:
array([[[0,1,2,3],
[4,5,6,7],
[8,9,10,11]],
[[12,13,14,15],
[16,17,18,19],
[20,21,22,23]]])
使用numpy.set_printoptions可以設置numpy變數的列印格式
在ipython環境下,使用help(numpy.set_printoptions)查詢使用幫助和示例
加法和減法操作要求操作雙方的維數信息一致,均為M*N為數組方可正確執行操作。
a=np.arange(4)
輸出:
array([0,1,2,3])
b=a**2
輸出:
array([0,1,4,9])
c=10*np.sin(a)
輸出:
array([0.,8.41470985,9.09297427,1.41120008])
n<35
輸出:
array([True,True,True,True],dtype=bool)
A=np.array([[1,1],[0,1]])
B=np.array([[2,0],[3,4]])
C=A*B#元素點乘
輸出:
array([[2,0],
[0,4]])
D=A.dot(B)#矩陣乘法
輸出:
array([[5,4],
[3,4]])
E=np.dot(A,B)#矩陣乘法
輸出:
array([[5,4],
[3,4]])
多維數組操作過程中的類型轉換
When operating with arrays of different types, the type of the
resulting array corresponds to the more general or precise one (a
behavior known as upcasting)
即操作不同類型的多維數組時,結果自動轉換為精度更高類型的數組,即upcasting
數組索引、切片和迭代
a=np.ones((2,3),dtype=int)#int32
b=np.random.random((2,3))#float64
b+=a#正確
a+=b#錯誤
a=np.ones(3,dtype=np.int32)
b=np.linspace(0,pi,3)
c=a+b
d=np.exp(c*1j)
輸出:
array([0.54030231+0.84147098j,-0.84147098+0.54030231j,
-0.54030231-0.84147098j])
d.dtype.name
輸出:
'complex128'
多維數組的一元操作,如求和、求最小值、最大值等
a=np.random.random((2,3))
a.sum()
a.min()
a.max()
b=np.arange(12).reshape(3,4)
輸出:
array([[0,1,2,3],
[4,5,6,7],
[8,9,10,11]])
b.sum(axis=0)#按列求和
輸出:
array([12,15,18,21])
b.sum(axis=1)#按行求和
輸出:
array([6,22,38])
b.cumsum(axis=0)#按列進行元素累加
輸出:
array([[0,1,2,3],
[4,6,8,10],
[12,15,18,21]])
b.cumsum(axis=1)#按行進行元素累加
輸出:
array([[0,1,3,6],
[4,9,15,22],
[8,17,27,38]])
universal functions
B=np.arange(3)
np.exp(B)
np.sqrt(B)
C=np.array([2.,-1.,4.])
np.add(B,C)
其他的ufunc函數包括:
all,any,apply_along_axis,argmax,argmin,argsort,average,bincount,ceil,clip,conj,corrcoef,cov,cross,cumprod,cumsum,diff,dot,floor,inner,lexsort,max,maximum,mean,median,min,minimum,nonzero,outer,prod,re,round,sort,std,sum,trace,transpose,var,vdot,vectorize,where
a=np.arange(10)**3
a[2]
a[2:5]
a[::-1]#逆序輸出
foriina:
print(i**(1/3.))
deff(x,y):
return10*x+y
b=np.fromfunction(f,(5,4),dtype=int)
b[2,3]
b[0:5,1]
b[:,1]
b[1:3,:]
b[-1]
c=np.array([[[0,1,2],[10,11,12]],[[100,101,102],[110,111,112]]])
輸出:
array([[[0,1,2],
[10,11,12]],
[[100,101,102],
[110,111,112]]])
c.shape
輸出:
(2L,2L,3L)
c[0,...]
c[0,:,:]
輸出:
array([[0,1,2],
[10,11,12]])
c[:,:,2]
c[...,2]
輸出:
array([[2,12],
[102,112]])
forrowinc:
print(row)
forelementinc.flat:
print(element)
a=np.floor(10*np.random.random((3,4)))
輸出:
array([[3.,9.,8.,4.],
[2.,1.,4.,6.],
[0.,6.,0.,2.]])
a.ravel()
輸出:
array([3.,9.,8.,...,6.,0.,2.])
a.reshape(6,2)
輸出:
array([[3.,9.],
[8.,4.],
[2.,1.],
[4.,6.],
[0.,6.],
[0.,2.]])
a.T
輸出:
array([[3.,2.,0.],
[9.,1.,6.],
[8.,4.,0.],
[4.,6.,2.]])
a.T.shape
輸出:
(4L,3L)
a.resize((2,6))
輸出:
array([[3.,9.,8.,4.,2.,1.],
[4.,6.,0.,6.,0.,2.]])
a.shape
輸出:
(2L,6L)
a.reshape(3,-1)
輸出:
array([[3.,9.,8.,4.],
[2.,1.,4.,6.],
[0.,6.,0.,2.]])
詳查以下函數:
ndarray.shape,reshape,resize,ravel
a=np.floor(10*np.random.random((2,2)))
輸出:
array([[5.,2.],
[6.,2.]])
b=np.floor(10*np.random.random((2,2)))
輸出:
array([[0.,2.],
[4.,1.]])
np.vstack((a,b))
輸出:
array([[5.,2.],
[6.,2.],
[0.,2.],
[4.,1.]])
np.hstack((a,b))
輸出:
array([[5.,2.,0.,2.],
[6.,2.,4.,1.]])
fromnumpyimportnewaxis
np.column_stack((a,b))
輸出:
array([[5.,2.,0.,2.],
[6.,2.,4.,1.]])
a=np.array([4.,2.])
b=np.array([2.,8.])
a[:,newaxis]
輸出:
array([[4.],
[2.]])
b[:,newaxis]
輸出:
array([[2.],
[8.]])
np.column_stack((a[:,newaxis],b[:,newaxis]))
輸出:
array([[4.,2.],
[2.,8.]])
np.vstack((a[:,newaxis],b[:,newaxis]))
輸出:
array([[4.],
[2.],
[2.],
[8.]])
np.r_[1:4,0,4]
輸出:
array([1,2,3,0,4])
np.c_[np.array([[1,2,3]]),0,0,0,np.array([[4,5,6]])]
輸出:
array([[1,2,3,0,0,0,4,5,6]])
詳細使用請查詢以下函數:
hstack,vstack,column_stack,concatenate,c_,r_
a=np.floor(10*np.random.random((2,12)))
輸出:
array([[9.,7.,9.,...,3.,2.,4.],
[5.,3.,3.,...,9.,7.,7.]])
np.hsplit(a,3)
輸出:
[array([[9.,7.,9.,6.],
[5.,3.,3.,1.]]),array([[7.,2.,1.,6.],
[7.,5.,0.,2.]]),array([[9.,3.,2.,4.],
[3.,9.,7.,7.]])]
np.hsplit(a,(3,4))
輸出:
[array([[9.,7.,9.],
[5.,3.,3.]]),array([[6.],
[1.]]),array([[7.,2.,1.,...,3.,2.,4.],
[7.,5.,0.,...,9.,7.,7.]])]
實現類似功能的函數包括:
hsplit,vsplit,array_split
a=np.arange(12)
輸出:
array([0,1,2,...,9,10,11])
notatall
b=a
bisa#True
b.shape=3,4
a.shape#(3L,4L)
deff(x)#,sofunctioncallsmakeno.
print(id(x))#id是python對象的唯一標識符
id(a)#111833936L
id(b)#111833936L
f(a)#111833936L
淺復制
c=a.view()
cisa#False
c.baseisa#True
c.flags.owndata#False
c.shape=2,6
a.shape#(3L,4L)
c[0,4]=1234
print(a)
輸出:
array([[0,1,2,3],
[1234,5,6,7],
[8,9,10,11]])
s=a[:,1:3]
s[:]=10
print(a)
輸出:
array([[0,10,10,3],
[1234,10,10,7],
[8,10,10,11]])
深復制
d=a.()
disa#False
d.baseisa#False
d[0,0]=9999
print(a)
輸出:
array([[0,10,10,3],
[1234,10,10,7],
[8,10,10,11]])
numpy基本函數和方法一覽
Array Creation
arange,array,,empty,empty_like,eye,fromfile,fromfunction,identity,linspace,logspace,mgrid,ogrid,ones,ones_like,r,zeros,zeros_like
Conversions
ndarray.astype,atleast_1d,atleast_2d,atleast_3d,mat
Manipulations
array_split,column_stack,concatenate,diagonal,dsplit,dstack,hsplit,hstack,ndarray.item,newaxis,ravel,repeat,reshape,resize,squeeze,swapaxes,take,transpose,vsplit,vstack
Questionsall,any,nonzero,where
Ordering
argmax,argmin,argsort,max,min,ptp,searchsorted,sort
Operations
choose,compress,cumprod,cumsum,inner,ndarray.fill,imag,prod,put,putmask,real,sum
Basic Statistics
cov,mean,std,var
Basic Linear Algebra
cross,dot,outer,linalg.svd,vdot
完整的函數和方法一覽表鏈接:
https://docs.scipy.org/doc/numpy-dev/reference/routines.html#routines
② Python-與常規Python列表相比,NumPy有什麼優勢
NumPy的數組比Python列表更緊湊-您在Python中描述的列表列表至少需要20 MB左右,而單元格中具有單精度浮點數的NumPy 3D數組則需要4 MB。使用NumPy可以更快地讀取和寫入項目。
也許只關心一百萬個單元就不會那麼在意,但是肯定會關心十億個單元-兩種方法都不適合32位體系結構,但是使用64位版本,NumPy可以節省約4 GB ,僅Python一個就需要至少約12 GB(很多指針的大小加倍),這是一個昂貴得多的硬體!
差異主要是由於「間接性」造成的-Python列表是指向Python對象的指針的數組,每個指針至少4個位元組,對於最小的Python對象也至少包含16個位元組(類型指針為4,引用計數為4,類型為4值-內存分配器向上舍入為16)。NumPy數組是統一值的數組-單精度數字每個佔用4個位元組,雙精度數字每個佔用8個位元組。靈活性較差。
③ Python—Numpy庫的用法
NumPy 是一個 Python 包。 它代表 「Numeric Python」。 它是一個由多維數組對象和用於處理數組的常式集合組成的庫。
NumPy 支持比 Python 更多種類的數值類型。 下表顯示了 NumPy 中定義的不同標量數據類型。
[('age', 'i1')]
[10 20 30]
[('abc', 21, 50.0), ('xyz', 18, 75.0)]
每個內建類型都有一個唯一定義它的字元代碼:
[[1, 2] [3, 4] [5, 6]]
[[[ 0, 1, 2] [ 3, 4, 5] [ 6, 7, 8] [ 9, 10, 11]] [[12, 13, 14] [15, 16, 17] [18, 19, 20] [21, 22, 23]]]
[1 2 3]
[1 2 3]
[(1, 2, 3) (4, 5)]
原始數組是: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]]
修改後的數組是: 0 5 10 15 20 25 30 35 40 45 50 55
原始數組是: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]]
原始數組的轉置是: [[ 0 20 40] [ 5 25 45] [10 30 50] [15 35 55]]
修改後的數組是: 0 5 10 15 20 25 30 35 40 45 50 55
C風格是橫著順序
F風格是豎著的順序
原始數組是: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]]
修改後的數組是: [[ 0 10 20 30] [ 40 50 60 70] [ 80 90 100 110]]
第一個數組: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]]
第二個數組: [1 2 3 4]
修改後的數組是: 0:1 5:2 10:3 15:4 20:1 25:2 30:3 35:4 40:1 45:2 50:3 55:4
原始數組: [[0 1 2 3] [4 5 6 7]]
調用 flat 函數之後: 5
原數組: [[0 1 2 3] [4 5 6 7]]
展開的數組:默認是A [0 1 2 3 4 5 6 7]
以 F 風格順序展開的數組: [0 4 1 5 2 6 3 7]
原數組: [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]]
轉置數組: [[ 0 4 8] [ 1 5 9] [ 2 6 10] [ 3 7 11]]
④ 什麼是數組的維度,python 的ndim的使用
數組的維度就是一個數組中的某個元素,當用數組下標表示的時候,需要用幾個數字來表示才能唯一確定這個元素,這個數組就是幾維。numpy中直接用 * 即可表示數與向量的乘法,參考python 2.7的一個例子:inport numpy as np a = np.array([1,2,3,4]) # 向量 b = 5 # 數 print a*b ++++++++++++ [5,10,15,20]