① python是什麼
python 中文就是蟒蛇的意思。
在計算機中,它是一種編程語言。
Python(英語發音:/ˈpaɪθən/), 是一種面向對象、解釋型計算機程序設計語言,由Guido van Rossum於1989年底發明,第一個公開發行版發行於1991年。Python語法簡潔而清晰,具有豐富和強大的類庫。它常被昵稱為膠水語言,它能夠把用其他語言製作的各種模塊(尤其是C/C++)很輕松地聯結在一起。常見的一種應用情形是,使用Python快速生成程序的原型(有時甚至是程序的最終界面),然後對其中有特別要求的部分,用更合適的語言改寫,比如3D游戲中的圖形渲染模塊,性能要求特別高,就可以用C++重寫。
1發展歷程編輯
自從20世紀90年代初Python語言誕生至今,它逐漸被廣泛應用於處理系統管理任務和Web編程。孫寬Python[1] 已經成為最受歡迎的程序設計語言之一。2011年1月,它被TIOBE編程語言排行榜評為2010年度語言。自從2004年以後,python的使用率是呈線性增長[2] 。
由於Python語言的簡潔、易讀以及可擴展性,在國外用Python做科學計算的研究機構日益增多,一些知名大學
已經採用Python教授程序設計課程。例如卡耐基梅隆大學的編程基礎和麻省理工學院的計算機科學及編程導論就使用Python語言講授。眾多開源的科學
計算軟體包都提供了Python的調用介面,
例如著名的計算機視覺庫OpenCV、三維可視化庫VTK、醫學圖像處理庫ITK。而Python專用的科學計算擴展庫就更多了,例如如下3個十分經典的
科學計算擴展庫:NumPy、SciPy和則消亮matplotlib,它們分別為Python提橋脊供了快速數組處理、數值運算以及繪圖功能。因此Python語
言及其眾多的擴展庫所構成的開發環境十分適合工程技術、科研人員處理實驗數據、製作圖表,甚至開發科學計算應用程序。
說起科學計算,首先會被提到的可能是MATLAB。然而除了MATLAB的一些專業性很強的工具箱還無法替代之外,MATLAB的大部分常用功能都可以在Python世界中找到相應的擴展庫。和MATLAB相比,用Python做科學計算有如下優點:
● 首先,MATLAB是一款商用軟體,並且價格不菲。而Python完全免費,眾多開源的科學計算庫都提供了Python的調用介面。用戶可以在任何計算機上免費安裝Python及其絕大多數擴展庫。
● 其次,與MATLAB相比,Python是一門更易學、更嚴謹的程序設計語言。它能讓用戶編寫出更易讀、易維護的代碼。
● 最後,MATLAB主要專注於工程和科學計算。然而即使在計算領域,也經常會遇到文件管理、界面設計、網路通信等各種需求。而Python有著豐富的擴展庫,可以輕易完成各種高級任務,開發者可以用Python實現完整應用程序所需的各種功能。
2產生
Python的創始人為Guido van Rossum。1989年聖誕節期間,在阿姆斯特丹,Guido為了打發聖誕節的無趣,決心開發一個新的腳本解釋程序,做為ABC 語言的一種繼承。之所以選中Python(大蟒蛇的意思)作為程序的名字,是因為他是一個叫Monty Python的喜劇團體的愛好者。
ABC是由Guido參加設計的一種教學語言。就Guido本人看來,ABC
這種語言非常優美和強大,是專門為非專業程序員設計的。但是ABC語言並沒有成功,究其原因,Guido 認為是非開放造成的。Guido
決心在Python 中避免這一錯誤。同時,他還想實現在ABC 中閃現過但未曾實現的東西。
就這樣,Python在Guido手中誕生了。可以說,Python是從ABC發展起來,主要受到了Mola-3(另一種相當優美且強大的語言,為小型團體所設計的)的影響。並且結合了Unix shell和C的習慣。
3風格
Python在設計上堅持了清晰劃一的風格,這使得Python成為一門易讀、易維護,並且被大量用戶所歡迎的、用途廣泛的語言。
設計者開發時總的指導思想是,對於一個特定的問題,只要有一種最好的方法來解決就好了。這在由Tim
Peters寫的Python格言(稱為The Zen of Python)裡面表述為:There should be one-- and
preferably only one --obvious way to do it. 這正好和Perl語言(另一種功能類似的高級動態語言)的中心思想TMTOWTDI(There's More Than One Way To Do It)完全相反。
Python的作者有意的設計限制性很強的語法,使得不好的編程習慣(例如if語句的下一行不向右縮進)都不能通過編譯。其中很重要的一項就是Python的縮進規則。
一個和其他大多數語言(如C)的區別就是,一個模塊的界限,完全是由每行的首字元在這一行的位置來決定的(而C語言
是用一對花括弧{}來明確的定出模塊的邊界的,與字元的位置毫無關系)。這一點曾經引起過爭議。因為自從C這類的語言誕生後,語言的語法含義與字元的排列
方式分離開來,曾經被認為是一種程序語言的進步。不過不可否認的是,通過強製程序員們縮進(包括if,for和函數定義等所有需要使用模塊的地方),Python確實使得程序更加清晰和美觀。
4設計定位
Python
的設計哲學是「優雅」、「明確」、「簡單」。因此,Perl語言中「總是有多種方法來做同一件事」的理念在Python開發者中通常是難以忍受的。
Python開發者的哲學是「用一種方法,最好是只有一種方法來做一件事」。在設計Python語言時,如果面臨多種選擇,Python開發者一般會拒絕
花俏的語法,而選擇明確的沒有或者很少有歧義的語法。由於這種設計觀念的差異,Python源代碼通常被認為比Perl具備更好的可讀性,並且能夠支撐大
規模的軟體開發。這些准則被稱為Python格言。在Python解釋器內運行import this可以獲得完整的列表。
Python開發人員盡量避開不成熟或者不重要的優化。一些針對非重要部位的加快運行速度的補丁通常不會被合並到
Python內。所以很多人認為Python很慢。不過,根據二八定律,大多數程序對速度要求不高。在某些對運行速度要求很高的情況,Python設計師
傾向於使用JIT技術,或者用使用C/C++語言改寫這部分程序。可用的JIT技術是PyPy。
Python是完全面向對象的語言。函數、模塊、數字、字元串都是對象。並且完全支持繼承、重載、派生、多繼承,有益於增強源代碼的復用性。Python支持重載運算符和動態類型。相對於Lisp這種傳統的函數式編程語言,Python對函數式設計只提供了有限的支持。有兩個標准庫(functools, itertools)提供了Haskell和Standard ML中久經考驗的函數式程序設計工具。
雖然Python可能被粗略地分類為「腳本語言」(script language),但實際上一些大規模軟體開發計劃例如Zope、Mnet及BitTorrent,Google也廣泛地使用它。Python的支持者較喜歡稱它為一種高級動態編程語言,原因是「腳本語言」泛指僅作簡單程序設計任務的語言,如shellscript、VBScript等只能處理簡單任務的編程語言,並不能與Python相提並論。
Python本身被設計為可擴充的。並非所有的特性和功能都集成到語言核心。Python提供了豐富的API和
工具,以便程序員能夠輕松地使用C語言、C++、Cython來編寫擴充模塊。Python編譯器本身也可以被集成到其它需要腳本語言的程序內。因此,很
多人還把Python作為一種「膠水語言」(glue
language)使用。使用Python將其他語言編寫的程序進行集成和封裝。在Google內部的很多項目,例如Google
Engine使用C++編寫性能要求極高的部分,然後用Python或Java/Go調用相應的模塊。《Python技術手冊》的作者馬特利(Alex
Martelli)說:「這很難講,不過,2004 年,Python 已在 Google 內部使用,Google 召募許多 Python
高手,但在這之前就已決定使用Python,他們的目的是 Python where we can, C++ where we
must,在操控硬體的場合使用 C++,在快速開發時候使用 Python。」
② python怎麼做大數據分析
數據獲取:公開數據、Python爬蟲外部數據的獲取方式主要有以下兩種。(推薦學習:Python視頻教程)
第一種是獲取外部的公開數據集,一些科研機構、企業、政府會開放一些數據,你需要到特定的網站去下載這些數據。這些數據集通常比較完善、質量相對較高。
另一種獲取外部數據的方式就是爬蟲。
比如你可以通過爬蟲獲取招聘網站某一職位的招聘信息,爬取租房網站上某城市的租房信息,爬取豆瓣評分評分最高的電影列表,獲取知乎點贊排行、網易雲音樂評論排行列表。基於互聯網爬取的數據,你可以對某個行業、某種人群進行分析。
在爬蟲之前你需要先了解一些 Python 的基礎知識:元素(列表、字典、元組等)、變數、循環、函數………
以及,如何用 Python 庫(urlpb、BeautifulSoup、requests、scrapy)實現網頁爬蟲。
掌握基礎的爬蟲之後,你還需要一些高級技巧,比如正則表達式、使用cookie信息、模擬用戶登錄、抓包分析、搭建代理池等等,來應對不同網站的反爬蟲限制。
數據存取:SQL語言
在應對萬以內的數據的時候,Excel對於一般的分析沒有問題,一旦數據量大,就會力不從心,資料庫就能夠很好地解決這個問題。而且大多數的企業,都會以SQL的形式來存儲數據。
SQL作為最經典的資料庫工具,為海量數據的存儲與管理提供可能,並且使數據的提取的效率大大提升。你需要掌握以下技能:
提取特定情況下的數據
資料庫的增、刪、查、改
數據的分組聚合、如何建立多個表之間的聯系
數據預處理:Python(pandas)
很多時候我們拿到的數據是不幹凈的,數據的重復、缺失、異常值等等,這時候就需要進行數據的清洗,把這些影響分析的數據處理好,才能獲得更加精確地分析結果。
對於數據預處理,學會 pandas (Python包)的用法,應對一般的數據清洗就完全沒問題了。需要掌握的知識點如下:
選擇:數據訪問
缺失值處理:對缺失數據行進行刪除或填充
重復值處理:重復值的判斷與刪除
異常值處理:清除不必要的空格和極端、異常數據
相關操作:描述性統計、Apply、直方圖等
合並:符合各種邏輯關系的合並操作
分組:數據劃分、分別執行函數、數據重組
Reshaping:快速生成數據透視表
概率論及統計學知識
需要掌握的知識點如下:
基本統計量:均值、中位數、眾數、百分位數、極值等
其他描述性統計量:偏度、方差、標准差、顯著性等
其他統計知識:總體和樣本、參數和統計量、ErrorBar
概率分布與假設檢驗:各種分布、假設檢驗流程
其他概率論知識:條件概率、貝葉斯等
有了統計學的基本知識,你就可以用這些統計量做基本的分析了。你可以使用 Seaborn、matplotpb 等(python包)做一些可視化的分析,通過各種可視化統計圖,並得出具有指導意義的結果。
Python 數據分析
掌握回歸分析的方法,通過線性回歸和邏輯回歸,其實你就可以對大多數的數據進行回歸分析,並得出相對精確地結論。這部分需要掌握的知識點如下:
回歸分析:線性回歸、邏輯回歸
基本的分類演算法:決策樹、隨機森林……
基本的聚類演算法:k-means……
特徵工程基礎:如何用特徵選擇優化模型
調參方法:如何調節參數優化模型
Python 數據分析包:scipy、numpy、scikit-learn等
在數據分析的這個階段,重點了解回歸分析的方法,大多數的問題可以得以解決,利用描述性的統計分析和回歸分析,你完全可以得到一個不錯的分析結論。
當然,隨著你實踐量的增多,可能會遇到一些復雜的問題,你就可能需要去了解一些更高級的演算法:分類、聚類。
然後你會知道面對不同類型的問題的時候更適合用哪種演算法模型,對於模型的優化,你需要去了解如何通過特徵提取、參數調節來提升預測的精度。
你可以通過 Python 中的 scikit-learn 庫來實現數據分析、數據挖掘建模和分析的全過程。
更多Python相關技術文章,請訪問Python教程欄目進行學習!以上就是小編分享的關於python怎麼做大數據分析的詳細內容希望對大家有所幫助,更多有關python教程請關注環球青藤其它相關文章!
③ python人工智慧需要學什麼
有不少同學學習 Python 的原因是對人工智慧感興趣,有志於從事相關行業。今天我們來聊聊這個方向所需要的一些技能。這里我們主要談論的是編程技能。(推薦學習:Python視頻教程)
如果你打算採用 Python 作為主要開發語言(這也是目前人工智慧領域的主流),那麼 Python 的開發基礎是必須得掌握的,這是一切基於 Python 開發的根基。你得對 Python 的基本語法、數據類型、常見模塊有所了解,能正確使用條件、循環等邏輯,掌握 pst、dict 等數據結構及其常用操作,了解函數、模塊、面向對象的概念和使用等等。
在對此已經熟練之後,你需要學習數據處理相關的 Python 工具庫:
NumPy
NumPy 提供了許多數學計算的數據結構和方法,較 Python 自身的 pst 效率高很多。它提供的 ndarray 大大簡化了矩陣運算。
Pandas
基於 NumPy 實現的數據處理工具。提供了大量數據統計、分析方面的模型和方法。一維的 Series,二維的 DataFrame 和三維的 Panel 是其主要的數據結構。
SciPy
進行科學計算的 Python 工具包,提供了諸如微積分、線性代數、信號處理、傅里葉變換、曲線擬合等眾多方法。
Matplotpb
Python 最基礎的繪圖工具。功能豐富,定製性強,幾乎可滿足日常各類繪圖需求,但配置較復雜。
只要你用 Python 和數據打交道,就繞不開以上這幾個庫,所以務必學習一下。
而在此之後,你就需要根據自己的具體方向,選擇更專業的工具包進行研究和應用。
Python 在人工智慧方面最有名的工具庫主要有:
Scikit-Learn
Scikit-Learn 是用 Python 開發的機器學習庫,其中包含大量機器學習演算法、數據集,是數據挖掘方便的工具。它基於 NumPy、SciPy 和 Matplotpb,可直接通過 pip 安裝。
TensorFlow
TensorFlow 最初由 Google 開發,用於機器學習的研究。TensorFlow 可以在 GPU 或 CPU 上運行,在深度學習領域表現優異。目前無論是在學術研究還是工程應用中都被廣泛使用。但 TensorFlow 相對來說更底層,更多時候我們會使用基於它開發的其他框架。
Theano
Theano 是成熟而穩定的深度學習庫。與 TensorFlow 類似,它是一個比較底層的庫,適合數值計算優化,支持 GPU 編程。有很多基於 Theano 的庫都在利用其數據結構,但對於開發來說,它的介面並不是很友好。
Keras
Keras 是一個高度模塊化的神經網路庫,用 Python 編寫,能夠在 TensorFlow 或 Theano 上運行。它的介面非常簡單易用,大大提升了開發效率。
Caffe
Caffe 在深度學習領域名氣很大。它由伯克利視覺和學習中心(BVLC)和社區貢獻者開發,具有模塊化、高性能的優點,尤其在計算機視覺領域有極大的優勢。Caffe 本身並不是一個 Python 庫,但它提供了 Python 的介面。
PyTorch
Torch 也是一個老牌機器學習庫。Facebook 人工智慧研究所用的框架是 Torch,DeepMind 在被谷歌收購之前用的也是 Torch(後轉為 TensorFlow),足見其能力。但因 Lua 語言導致其不夠大眾。直到它的 Python 實現版本 PyTorch 的出現。
MXNet
亞馬遜 AWS 的默認深度學習引擎,分布式計算是它的特色之一,支持多個 CPU/GPU 訓練網路。
藉助這些強大的工具,你已經可以使用各種經典的模型,對數據集進行訓練和預測。但想成為一名合格的人工智慧開發者,僅僅會調用工具的 API 和調參數是遠遠不夠的。
Python 是人工智慧開發的重要工具,編程是此方向的必備技能。但並不是掌握 Python 就掌握了人工智慧。人工智慧的核心是機器學習(Machine Learning)和深度學習。而它們的基礎是數學(高等數學/線性代數/概率論等),編程是實現手段。
所以你想要進入這個領域,除了編程技能外,數學基礎必不可少,然後還要去了解數據挖掘、機器學習、深度學習等知識。
這不是條幾個月就能速成的路,但堅持下去一定會有所收獲。
更多Python相關技術文章,請訪問Python教程欄目進行學習!以上就是小編分享的關於python人工智慧需要學什麼的詳細內容希望對大家有所幫助,更多有關python教程請關注環球青藤其它相關文章!
④ Python中數據可視化經典庫有哪些
Python有很多經典的數據可視化庫,比較經典的數據可視化庫有下面幾個。
是Python編程語言及其數值數學擴展包 NumPy 的可視化操作界面。它利用通用的圖形用戶界面工具包,如 Tkinter, wxPython, Qt 或 GTK+,向應用程序嵌入式繪圖提供了應用程序介面。
pyplot 是 matplotlib 的一個模塊,它提供了一個類似 MATLAB 的介面。 matplotlib 被設計得用起來像 MATLAB,具有使用 Python 的能力。
優點:繪圖質量高,可繪制出版物質量級別的圖形。代碼夠簡單,易於理解和擴展,使繪圖變得輕松,通過Matplotlib可以很輕松地畫一些或簡單或復雜的圖形,幾行代碼即可生成直方圖、條形圖、散點圖、密度圖等等,最重要的是免費和開源。
優點:用於創建、操縱和研究復雜網路的結構、以及學習復雜網路的結構、功能及其動力學。
上面是我的回答,希望對您有所幫助!
⑤ python數據分析需要哪些庫
1.Numpy庫
是Python開源的數值計算擴展工具,提供了Python對多維數組的支持,能夠支持高級的維度數組與矩陣運算。此外,針對數組運算也提供了大量的數學函數庫,Numpy是大部分Python科學計算的基礎,具有很多功能。
2.Pandas庫
是一個基於Numpy的數據分析包,為了解決數據分析任務而創建的。Pandas中納入了大量庫和標準的數據模型,提供了高效地操作大型數據集所需要的函數和方法,使用戶能快速便捷地處理數據。
3.Matplotlib庫
是一個用在Python中繪制數組的2D圖形庫,雖然它起源於模仿MATLAB圖形命令,但它獨立於MATLAB,可以通過Pythonic和面向對象的方式使用,是Python中Z出色的繪圖庫。主要用純Python語言編寫的,它大量使用Numpy和其他擴展代碼,即使對大型數組也能提供良好的性能。
4.Seaborn庫
是Python中基於Matplotlib的數據可視化工具,提供了很多高層封裝的函數,幫助數據分析人員快速繪制美觀的數據圖形,從而避免了許多額外的參數配置問題。
5.NLTK庫
被稱為使用Python進行教學和計算語言學工作的Z佳工具,以及用自然語言進行游戲的神奇圖書館。NLTK是一個領先的平台,用於構建使用人類語言數據的Python程序,它為超過50個語料庫和詞彙資源提供了易於使用的介面,還提供了一套文本處理庫,用於分類、標記化、詞干化、解析和語義推理、NLP庫的包裝器和一個活躍的討論社區。
⑥ python 數據挖掘需要用哪些庫和工具
python 數據挖掘常用的庫太多了!主要分為以下幾大類:
第一數據獲取:request,BeautifulSoup
第二基本數學庫:numpy
第三 資料庫出路 pymongo
第四 圖形可視化 matplotlib
第五 樹分析基本的庫 pandas
數據挖掘一般是指從大量的數據中通過演算法搜索隱藏於其中信息的過程。數據挖掘本質上像是機器學習和人工智慧的基礎,它的主要目的是從各種各樣的數據來源中,提取出超集的信息,然後將這些信息合並讓你發現你從來沒有想到過的模式和內在關系。這就意味著,數據挖掘不是一種用來證明假說的方法,而是用來構建各種各樣的假說的方法。
想要了解更多有關python 數據挖掘的信息,可以了解一下CDA數據分析師的課程。CDA數據分析師證書的含金量是很高的,簡單從兩個方面分析一下:首先是企業對於CDA的認可,經管之家CDA LEVEL Ⅲ數據科學家認證證書,屬於行業頂尖的人才認證,已獲得IBM大數據大學,中國電信,蘇寧,德勤,獵聘,CDMS等企業的認可。CDA證書逐漸獲得各企業用人單位認可與引進,如中國電信、中國移動、德勤,蘇寧,中國銀行,重慶統計局等。點擊預約免費試聽課。
⑦ 用python開發一個物流web代碼
詳細如下。
一個名叫「Remi」的Python庫,就是用來開發WebApp的。1.Remi庫簡介
Remi是一個用於Python應用程序的GUI庫,它將應用程序的界面轉換為HTML,以便在Web瀏覽器中呈現。嚴格地說,我們不能用Remi庫來編寫傳統的網站,而只能將它當成Web形式的Tkinter庫(Python最經典的圖形界面庫)來使用。如果要做網站,還是要老老實實學點前端知識,然後結合Python的Flask框架來開發。
2.Remi庫的安裝
Remi可以採用pip命令安裝
3.Remi庫的代碼
運行這段代碼後,瀏覽器會自動打開一個本地的網址,出現如下圖所示的界面。將「127.0.0.1」換成IP地址,就能通過其他電腦、手機的瀏覽器來訪問了。
點擊「請點擊這里」按鈕,界面會發生變化,如下圖所示。不用寫復雜的JS代碼,在Remi的支持下,網頁交互就變得這么簡單。如果需要了解更多關於Remi庫的資源,可以訪問github或者官方文檔。
github地址:https://github.com/dddomodossola/remi
文檔地址:https://remi.readthedocs.io/en/latest/
基於Remi編寫基於Web的物聯網應用程序,既然是編寫物聯網應用程序,那麼肯定還需要安裝siot庫。這也是「虛穀物聯」團隊開發的Python庫,因為MQTT的官方Python庫(paho-mqtt)編寫出來的代碼冗長,不好理解,於是委託上海蘑菇雲團隊在paho-mqtt的基礎上進行了新的封裝。siot庫可以通過pip命令來安裝,命令如下:
pipinstallsiot