⑴ python在金融方面有哪些好的書 知乎
建模基本沒怎麼講
也有人說深度不夠,但是我認為這書就是走馬觀花看看,了解python在finance方面的生態圈的。知道都有什麼工具,都能實現哪些功能,具體做的時候再深究。
⑵ 學python能幹嘛知乎
學python能幹嘛如下:
1、Python web開發。學完Python可以做web開發,因為現在中國學習Python的比較少,而招聘Python的卻非常的多。所以Python web是一個非常的選擇方向。
2、運維。很多人運維還沒有學習Python,但是Python給運維帶來的價值非常的大,很多時候我都覺得這些還沒有學習Python的人早晚都要被淘汰。
6、Python是依託人工智慧慢慢升溫的,但是Python不僅可以從事人工智慧方面的工作,同時可以從事全棧工程師、爬蟲、數據分析、機器學習、爬蟲等,需求量都是非常高的,所以對於學員來說,學習Python之後機會崗位是非常廣泛的。
⑶ python好學嗎 知乎
首先,對於初學者來說學習Python是不錯的選擇,一方面Python語言的語法比較簡單易學,另一方面Python的實驗環境也比較容易搭建。
學習編程是一定需要老師的,我不信誰能無師自通把Python學得多好。至少著急就業的人肯定不會,沒人指導很難學成。那麼學習Python編程語言難嗎?其實學Python不難,比起C語言、C#、 C+ +和JAVA這些編程語言相對容易很多。學習Python編程語言,動手實踐是一件非常愉快的事情。
下面給新手學習Python一些建議:
1、先買一本自學用的Python書籍,不要看電子書。
2、對Python基礎數據類型有個了解。
3、學會各種類型的操作方法。
4、了解函數和類的概念。
5、動手實踐,找小項目練習。
如果你決定了要學習Python技術,就是為了以後能有個高薪工作,而且你對自己學習Python還很自信,建議參加專業的學習。因為你對於工作的迫切需求,你肯定不會像大學那樣貪玩不學習,你會極其認真。
⑷ python 爬蟲框架哪個好 知乎
1、Scrapy:是一個為了抓取網站數據,提取數據結構性數據而編寫的應用框架,可以應用在包括數據挖掘,信息處理或存儲歷史數據等一系列的程序中,用這個框架可以輕松爬下來各種信息數據。
2、Pyspider:是一個用Python實現的功能強大的網路爬蟲系統,能在瀏覽器界面上進行腳本的編寫,功能的調度和爬取結果的實時查看,後端使用常用的資料庫進行抓取結構的存儲,還能定時設置任務與任務優先順序等。
3、Crawley:可以高速抓取對應網站內容,支持關系和非關系資料庫,數據可以導出為json、xml等。
4、Portia:是一個開源可視化爬蟲工具,可以讓您在不需要任何編程知識的情況下抓取網站,簡單地註解您感興趣的頁面,創建一個蜘蛛來從類似的頁面抓取數據。
5、Newspaper:可以用來提取新聞、文章和內容分析,使用多線程,支持10多種編程語言。
6、Beautiful Soup:是一個可以從HTML或者xml文件中提取數據的Python庫,它能通過你喜歡的轉換器實現慣用的文檔導航,查找,修改文檔的方式;同時幫你節省數小時甚至數天的工作時間。
7、Grab:是一個用於創建web刮板的Python框架,藉助Grab,您可以創建各種復雜的網頁抓取工具,從簡單的五行腳本到處理數萬個網頁的復雜非同步網站抓取工具。Grab提供一個api用於執行網路請求和處理接收到的內容。
8、Cola:是一個分布式的爬蟲框架,對於用戶來說,只需要編寫幾個特定的函數,而無需關注分布式運行的細節,任務會自動分配到多台機器上,整個過程對用戶是透明的。
⑸ 深度學習 python怎麼入門 知乎
自學深度學習是一個漫長而艱巨的過程。您需要有很強的線性代數和微積分背景,良好的Python編程技能,並扎實掌握數據科學、機器學習和數據工程。即便如此,在你開始將深度學習應用於現實世界的問題,並有可能找到一份深度學習工程師的工作之前,你可能需要一年多的學習和實踐。然而,知道從哪裡開始,對軟化學習曲線有很大幫助。如果我必須重新學習Python的深度學習,我會從Andrew Trask寫的Grokking deep learning開始。大多數關於深度學習的書籍都要求具備機器學習概念和演算法的基本知識。除了基本的數學和編程技能之外,Trask的書不需要任何先決條件就能教你深度學習的基礎知識。這本書不會讓你成為一個深度學習的向導(它也沒有做這樣的聲明),但它會讓你走上一條道路,讓你更容易從更高級的書和課程中學習。用Python構建人工神經元
大多數深度學習書籍都是基於一些流行的Python庫,如TensorFlow、PyTorch或Keras。相比之下,《運用深度學習》(Grokking Deep Learning)通過從零開始、一行一行地構建內容來教你進行深度學習。
《運用深度學習》
你首先要開發一個人工神經元,這是深度學習的最基本元素。查斯克將帶領您了解線性變換的基本知識,這是由人工神經元完成的主要計算。然後用普通的Python代碼實現人工神經元,無需使用任何特殊的庫。
這不是進行深度學習的最有效方式,因為Python有許多庫,它們利用計算機的圖形卡和CPU的並行處理能力來加速計算。但是用普通的Python編寫一切對於學習深度學習的來龍去是非常好的。
在Grokking深度學習中,你的第一個人工神經元只接受一個輸入,將其乘以一個隨機權重,然後做出預測。然後測量預測誤差,並應用梯度下降法在正確的方向上調整神經元的權重。有了單個神經元、單個輸入和單個輸出,理解和實現這個概念變得非常容易。您將逐漸增加模型的復雜性,使用多個輸入維度、預測多個輸出、應用批處理學習、調整學習速率等等。
您將通過逐步添加和修改前面章節中編寫的Python代碼來實現每個新概念,逐步創建用於進行預測、計算錯誤、應用糾正等的函數列表。當您從標量計算轉移到向量計算時,您將從普通的Python操作轉移到Numpy,這是一個特別擅長並行計算的庫,在機器學習和深度學習社區中非常流行。
Python的深度神經網路
有了這些人造神經元的基本構造塊,你就可以開始創建深層神經網路,這基本上就是你將幾層人造神經元疊放在一起時得到的結果。
當您創建深度神經網路時,您將了解激活函數,並應用它們打破堆疊層的線性並創建分類輸出。同樣,您將在Numpy函數的幫助下自己實現所有功能。您還將學習計算梯度和傳播錯誤通過層傳播校正跨不同的神經元。
隨著您越來越熟悉深度學習的基礎知識,您將學習並實現更高級的概念。這本書的特點是一些流行的正規化技術,如早期停止和退出。您還將獲得自己版本的卷積神經網路(CNN)和循環神經網路(RNN)。
在本書結束時,您將把所有內容打包到一個完整的Python深度學習庫中,創建自己的層次結構類、激活函數和神經網路體系結構(在這一部分,您將需要面向對象的編程技能)。如果您已經使用過Keras和PyTorch等其他Python庫,那麼您會發現最終的體系結構非常熟悉。如果您沒有,您將在將來更容易地適應這些庫。
在整本書中,查斯克提醒你熟能生巧;他鼓勵你用心編寫自己的神經網路,而不是復制粘貼任何東西。
代碼庫有點麻煩
並不是所有關於Grokking深度學習的東西都是完美的。在之前的一篇文章中,我說過定義一本好書的主要內容之一就是代碼庫。在這方面,查斯克本可以做得更好。
在GitHub的Grokking深度學習庫中,每一章都有豐富的jupiter Notebook文件。jupiter Notebook是一個學習Python機器學習和深度學習的優秀工具。然而,jupiter的優勢在於將代碼分解為幾個可以獨立執行和測試的小單元。Grokking深度學習的一些筆記本是由非常大的單元格組成的,其中包含大量未注釋的代碼。
這在後面的章節中會變得尤其困難,因為代碼會變得更長更復雜,在筆記本中尋找自己的方法會變得非常乏味。作為一個原則問題,教育材料的代碼應該被分解成小單元格,並在關鍵區域包含注釋。
此外,Trask在Python 2.7中編寫了這些代碼。雖然他已經確保了代碼在Python 3中也能順暢地工作,但它包含了已經被Python開發人員棄用的舊編碼技術(例如使用「for i in range(len(array))」範式在數組上迭代)。
更廣闊的人工智慧圖景
Trask已經完成了一項偉大的工作,它匯集了一本書,既可以為初學者,也可以為有經驗的Python深度學習開發人員填補他們的知識空白。
但正如泰溫·蘭尼斯特(Tywin Lannister)所說(每個工程師都會同意),「每個任務都有一個工具,每個工具都有一個任務。」深度學習並不是一根可以解決所有人工智慧問題的魔杖。事實上,對於許多問題,更簡單的機器學習演算法,如線性回歸和決策樹,將表現得和深度學習一樣好,而對於其他問題,基於規則的技術,如正則表達式和幾個if-else子句,將優於兩者。
關鍵是,你需要一整套工具和技術來解決AI問題。希望Grokking深度學習能夠幫助你開始獲取這些工具。
你要去哪裡?我當然建議選擇一本關於Python深度學習的深度書籍,比如PyTorch的深度學習或Python的深度學習。你還應該加深你對其他機器學習演算法和技術的了解。我最喜歡的兩本書是《動手機器學習》和《Python機器學習》。
你也可以通過瀏覽機器學習和深度學習論壇,如r/MachineLearning和r/deeplearning subreddits,人工智慧和深度學習Facebook組,或通過在Twitter上關注人工智慧研究人員來獲取大量知識。
AI的世界是巨大的,並且在快速擴張,還有很多東西需要學習。如果這是你關於深度學習的第一本書,那麼這是一個神奇旅程的開始。