㈠ python怎麼用線性回歸擬合
from sklearn import linear_model#線性回歸clf = linear_model.LinearRegression()#訓練clf.fit ([[0, 0], [1, 1], [2, 2]], [0, 1, 2])#表達式參數clf.coef_#測試improt numpy as npx = np.array([1,1])y = x.dot(clf.coef_)
㈡ 如何用Python進行線性回歸以及誤差分析
數據挖掘中的預測問題通常分為2類:回歸與分類。
簡單的說回歸就是預測數值,而分類是給數據打上標簽歸類。
本文講述如何用Python進行基本的數據擬合,以及如何對擬合結果的誤差進行分析。
本例中使用一個2次函數加上隨機的擾動來生成500個點,然後嘗試用1、2、100次方的多項式對該數據進行擬合。
擬合的目的是使得根據訓練數據能夠擬合出一個多項式函數,這個函數能夠很好的擬合現有數據,並且能對未知的數據進行預測。
代碼如下:
importmatplotlib.pyplot as plt
importnumpy as np
importscipy as sp
fromscipy.statsimportnorm
fromsklearn.pipelineimportPipeline
fromsklearn.linear_modelimportLinearRegression
fromsklearn.
fromsklearnimportlinear_model
''''' 數據生成 '''
x = np.arange(0,1,0.002)
y = norm.rvs(0, size=500, scale=0.1)
y = y + x**2
''''' 均方誤差根 '''
defrmse(y_test, y):
returnsp.sqrt(sp.mean((y_test - y) **2))
''''' 與均值相比的優秀程度,介於[0~1]。0表示不如均值。1表示完美預測.這個版本的實現是參考scikit-learn官網文檔 '''
defR2(y_test, y_true):
return1- ((y_test - y_true)**2).sum() / ((y_true - y_true.mean())**2).sum()
''''' 這是Conway&White《機器學習使用案例解析》里的版本 '''
defR22(y_test, y_true):
y_mean = np.array(y_true)
y_mean[:] = y_mean.mean()
return1- rmse(y_test, y_true) / rmse(y_mean, y_true)
plt.scatter(x, y, s=5)
degree = [1,2,100]
y_test = []
y_test = np.array(y_test)
fordindegree:
clf = Pipeline([('poly', PolynomialFeatures(degree=d)),
('linear', LinearRegression(fit_intercept=False))])
clf.fit(x[:, np.newaxis], y)
y_test = clf.predict(x[:, np.newaxis])
print(clf.named_steps['linear'].coef_)
print('rmse=%.2f, R2=%.2f, R22=%.2f, clf.score=%.2f'%
(rmse(y_test, y),
R2(y_test, y),
R22(y_test, y),
clf.score(x[:, np.newaxis], y)))
plt.plot(x, y_test, linewidth=2)
plt.grid()
plt.legend(['1','2','100'], loc='upper left')
plt.show()
該程序運行的顯示結果如下:
[ 0. 0.75873781]
rmse=0.15, R2=0.78, R22=0.53, clf.score=0.78
[ 0. 0.35936882 0.52392172]
rmse=0.11, R2=0.87, R22=0.64, clf.score=0.87
[ 0.00000000e+00 2.63903249e-01 3.14973328e-01 2.43389461e-01
1.67075328e-01 1.10674280e-01 7.30672237e-02 4.88605804e-02
......
3.70018540e-11 2.93631291e-11 2.32992690e-11 1.84860002e-11
1.46657377e-11]
rmse=0.10, R2=0.90, R22=0.68, clf.score=0.90
㈢ 使用Python的線性回歸問題,怎麼解決
本文中,我們將進行大量的編程——但在這之前,我們先介紹一下我們今天要解決的實例問題。
1) 預測房子價格
閃電俠是一部由劇作家/製片人Greg Berlanti、Andrew Kreisberg和Geoff Johns創作,由CW電視台播放的美國電視連續劇。它基於DC漫畫角色閃電俠(Barry Allen),一個具有超人速度移動能力的裝扮奇特的打擊犯罪的超級英雄,這個角色是由Robert Kanigher、John Broome和Carmine Infantino創作。它是綠箭俠的衍生作品,存在於同一世界。該劇集的試播篇由Berlanti、Kreisberg和Johns寫作,David Nutter執導。該劇集於2014年10月7日在北美首映,成為CW電視台收視率最高的電視節目。
綠箭俠是一部由劇作家/製片人 Greg Berlanti、Marc Guggenheim和Andrew Kreisberg創作的電視連續劇。它基於DC漫畫角色綠箭俠,一個由Mort Weisinger和George Papp創作的裝扮奇特的犯罪打擊戰士。它於2012年10月10日在北美首映,與2012年末開始全球播出。主要拍攝於Vancouver、British Columbia、Canada,該系列講述了億萬花花公子Oliver Queen,由Stephen Amell扮演,被困在敵人的島嶼上五年之後,回到家鄉打擊犯罪和腐敗,成為一名武器是弓箭的神秘義務警員。不像漫畫書中,Queen最初沒有使用化名」綠箭俠「。
由於這兩個節目並列為我最喜愛的電視節目頭銜,我一直想知道哪個節目更受其他人歡迎——誰會最終贏得這場收視率之戰。 所以讓我們寫一個程序來預測哪個電視節目會有更多觀眾。 我們需要一個數據集,給出每一集的觀眾。幸運地,我從維基網路上得到了這個數據,並整理成一個.csv文件。它如下所示。
閃電俠
閃電俠美國觀眾數
綠箭俠
綠箭俠美國觀眾數
1 4.83 1 2.84
2 4.27 2 2.32
3 3.59 3 2.55
4 3.53 4 2.49
5 3.46 5 2.73
6 3.73 6 2.6
7 3.47 7 2.64
8 4.34 8 3.92
9 4.66 9 3.06
觀眾數以百萬為單位。
解決問題的步驟:
首先我們需要把數據轉換為X_parameters和Y_parameters,不過這里我們有兩個X_parameters和Y_parameters。因此,把他們命名為flash_x_parameter、flash_y_parameter、arrow_x_parameter、arrow_y_parameter吧。然後我們需要把數據擬合為兩個不同的線性回歸模型——先是閃電俠,然後是綠箭俠。 接著我們需要預測兩個電視節目下一集的觀眾數量。 然後我們可以比較結果,推測哪個節目會有更多觀眾。
步驟1
導入我們的程序包:
Python
1
2
3
4
5
6
7
# Required Packages
import csv
import sys
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import datasets, linear_model
步驟2
寫一個函數,把我們的數據集作為輸入,返回flash_x_parameter、flash_y_parameter、arrow_x_parameter、arrow_y_parameter values。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
# Function to get data
def get_data(file_name):
data = pd.read_csv(file_name)
flash_x_parameter = []
flash_y_parameter = []
arrow_x_parameter = []
arrow_y_parameter = []
for x1,y1,x2,y2 in zip(data['flash_episode_number'],data['flash_us_viewers'],data['arrow_episode_number'],data['arrow_us_viewers']):
flash_x_parameter.append([float(x1)])
flash_y_parameter.append(float(y1))
arrow_x_parameter.append([float(x2)])
arrow_y_parameter.append(float(y2))
return flash_x_parameter,flash_y_parameter,arrow_x_parameter,arrow_y_parameter
現在我們有了我們的參數,來寫一個函數,用上面這些參數作為輸入,給出一個輸出,預測哪個節目會有更多觀眾。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Function to know which Tv show will have more viewers
def more_viewers(x1,y1,x2,y2):
regr1 = linear_model.LinearRegression()
regr1.fit(x1, y1)
predicted_value1 = regr1.predict(9)
print predicted_value1
regr2 = linear_model.LinearRegression()
regr2.fit(x2, y2)
predicted_value2 = regr2.predict(9)
#print predicted_value1
#print predicted_value2
if predicted_value1 > predicted_value2:
print "The Flash Tv Show will have more viewers for next week"
else:
print "Arrow Tv Show will have more viewers for next week"
把所有東西寫在一個文件中。打開你的編輯器,把它命名為prediction.py,復制下面的代碼到prediction.py中。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# Required Packages
import csv
import sys
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import datasets, linear_model
# Function to get data
def get_data(file_name):
data = pd.read_csv(file_name)
flash_x_parameter = []
flash_y_parameter = []
arrow_x_parameter = []
arrow_y_parameter = []
for x1,y1,x2,y2 in zip(data['flash_episode_number'],data['flash_us_viewers'],data['arrow_episode_number'],data['arrow_us_viewers']):
flash_x_parameter.append([float(x1)])
flash_y_parameter.append(float(y1))
arrow_x_parameter.append([float(x2)])
arrow_y_parameter.append(float(y2))
return flash_x_parameter,flash_y_parameter,arrow_x_parameter,arrow_y_parameter
# Function to know which Tv show will have more viewers
def more_viewers(x1,y1,x2,y2):
regr1 = linear_model.LinearRegression()
regr1.fit(x1, y1)
predicted_value1 = regr1.predict(9)
print predicted_value1
regr2 = linear_model.LinearRegression()
regr2.fit(x2, y2)
predicted_value2 = regr2.predict(9)
#print predicted_value1
#print predicted_value2
if predicted_value1 > predicted_value2:
print "The Flash Tv Show will have more viewers for next week"
else:
print "Arrow Tv Show will have more viewers for next week"
x1,y1,x2,y2 = get_data('input_data.csv')
#print x1,y1,x2,y2
more_viewers(x1,y1,x2,y2)
可能你能猜出哪個節目會有更多觀眾——但運行一下這個程序看看你猜的對不對。
3) 替換數據集中的缺失值
有時候,我們會遇到需要分析包含有缺失值的數據的情況。有些人會把這些缺失值捨去,接著分析;有些人會用最大值、最小值或平均值替換他們。平均值是三者中最好的,但可以用線性回歸來有效地替換那些缺失值。
這種方法差不多像這樣進行。
首先我們找到我們要替換那一列里的缺失值,並找出缺失值依賴於其他列的哪些數據。把缺失值那一列作為Y_parameters,把缺失值更依賴的那些列作為X_parameters,並把這些數據擬合為線性回歸模型。現在就可以用缺失值更依賴的那些列預測缺失的那一列。
一旦這個過程完成了,我們就得到了沒有任何缺失值的數據,供我們自由地分析數據。
為了練習,我會把這個問題留給你,所以請從網上獲取一些缺失值數據,解決這個問題。一旦你完成了請留下你的評論。我很想看看你的結果。
個人小筆記:
我想分享我個人的數據挖掘經歷。記得在我的數據挖掘引論課程上,教師開始很慢,解釋了一些數據挖掘可以應用的領域以及一些基本概念。然後突然地,難度迅速上升。這令我的一些同學感到非常沮喪,被這個課程嚇到,終於扼殺了他們對數據挖掘的興趣。所以我想避免在我的博客文章中這樣做。我想讓事情更輕松隨意。因此我嘗試用有趣的例子,來使讀者更舒服地學習,而不是感到無聊或被嚇到。
謝謝讀到這里——請在評論框里留下你的問題或建議,我很樂意回復你。
㈣ python多元線性回歸怎麼計算
1、什麼是多元線性回歸模型?
當y值的影響因素不唯一時,採用多元線性回歸模型。
y =y=β0+β1x1+β2x2+...+βnxn
例如商品的銷售額可能不電視廣告投入,收音機廣告投入,報紙廣告投入有關系,可以有 sales =β0+β1*TV+β2* radio+β3*newspaper.
2、使用pandas來讀取數據
pandas 是一個用於數據探索、數據分析和數據處理的python庫
[python]view plain
importpandasaspd
[html]view plain
<prename="code"class="python">#
data=pd.read_csv('/home/lulei/Advertising.csv')
#displaythefirst5rows
data.head()
上面代碼的運行結果:
上面顯示的結果類似一個電子表格,這個結構稱為Pandas的數據幀(data frame),類型全稱:pandas.core.frame.DataFrame.
pandas的兩個主要數據結構:Series和DataFrame:
Series類似於一維數組,它有一組數據以及一組與之相關的數據標簽(即索引)組成。
DataFrame是一個表格型的數據結構,它含有一組有序的列,每列可以是不同的值類型。DataFrame既有行索引也有列索引,它可以被看做由Series組成的字典。
[python]view plain
#displaythelast5rows
data.tail()
只顯示結果的末尾5行
[html]view plain
#checktheshapeoftheDataFrame(rows,colums)
data.shape
查看DataFrame的形狀,注意第一列的叫索引,和資料庫某個表中的第一列類似。
(200,4)
3、分析數據
特徵:
TV:對於一個給定市場中單一產品,用於電視上的廣告費用(以千為單位)
Radio:在廣播媒體上投資的廣告費用
Newspaper:用於報紙媒體的廣告費用
響應:
Sales:對應產品的銷量
在這個案例中,我們通過不同的廣告投入,預測產品銷量。因為響應變數是一個連續的值,所以這個問題是一個回歸問題。數據集一共有200個觀測值,每一組觀測對應一個市場的情況。
注意:這里推薦使用的是seaborn包。網上說這個包的數據可視化效果比較好看。其實seaborn也應該屬於matplotlib的內部包。只是需要再次的單獨安裝。
[python]view plain
importseabornassns
importmatplotlib.pyplotasplt
#ots
sns.pairplot(data,x_vars=['TV','Radio','Newspaper'],y_vars='Sales',size=7,aspect=0.8)
plt.show()#注意必須加上這一句,否則無法顯示。
[html]view plain
這里選擇TV、Radio、Newspaper作為特徵,Sales作為觀測值
[html]view plain
返回的結果:
[python]view plain
sns.pairplot(data,x_vars=['TV','Radio','Newspaper'],y_vars='Sales',size=7,aspect=0.8,kind='reg')
plt.show()
結果顯示如下:
4、線性回歸模型
優點:快速;沒有調節參數;可輕易解釋;可理解。
缺點:相比其他復雜一些的模型,其預測准確率不是太高,因為它假設特徵和響應之間存在確定的線性關系,這種假設對於非線性的關系,線性回歸模型顯然不能很好的對這種數據建模。
線性模型表達式:y=β0+β1x1+β2x2+...+βnxn其中
y是響應
β0是截距
β1是x1的系數,以此類推
在這個案例中:y=β0+β1∗TV+β2∗Radio+...+βn∗Newspaper
(1)、使用pandas來構建X(特徵向量)和y(標簽列)
scikit-learn要求X是一個特徵矩陣,y是一個NumPy向量。
pandas構建在NumPy之上。
因此,X可以是pandas的DataFrame,y可以是pandas的Series,scikit-learn可以理解這種結構。
[python]view plain
#
feature_cols=['TV','Radio','Newspaper']
#
X=data[feature_cols]
#
X=data[['TV','Radio','Newspaper']]
#printthefirst5rows
printX.head()
#checkthetypeandshapeofX
printtype(X)
printX.shape
輸出結果如下:
[python]view plain
#selectaSeriesfromtheDataFrame
y=data['Sales']
#
y=data.Sales
#printthefirst5values
printy.head()
輸出的結果如下:
(2)、構建訓練集與測試集
[html]view plain
<prename="code"class="python"><spanstyle="font-size:14px;">##構造訓練集和測試集
fromsklearn.cross_validationimporttrain_test_split#這里是引用了交叉驗證
X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=1)
#default split is 75% for training and 25% for testing
[html]view plain
printX_train.shape
printy_train.shape
printX_test.shape
printy_test.shape
輸出結果如下:
註:上面的結果是由train_test_spilit()得到的,但是我不知道為什麼我的版本的sklearn包中居然報錯:
處理方法:1、我後來重新安裝sklearn包。再一次調用時就沒有錯誤了。
2、自己寫函數來認為的隨機構造訓練集和測試集。(這個代碼我會在最後附上。)
(3)sklearn的線性回歸
[html]view plain
fromsklearn.linear_modelimportLinearRegression
linreg=LinearRegression()
model=linreg.fit(X_train,y_train)
printmodel
printlinreg.intercept_
printlinreg.coef_
輸出的結果如下:
[html]view plain
#
zip(feature_cols,linreg.coef_)
輸出如下:
y=2.668+0.0464∗TV+0.192∗Radio-0.00349∗Newspaper
如何解釋各個特徵對應的系數的意義?
對於給定了Radio和Newspaper的廣告投入,如果在TV廣告上每多投入1個單位,對應銷量將增加0.0466個單位。就是加入其它兩個媒體投入固定,在TV廣告上每增加1000美元(因為單位是1000美元),銷量將增加46.6(因為單位是1000)。但是大家注意這里的newspaper的系數居然是負數,所以我們可以考慮不使用newspaper這個特徵。這是後話,後面會提到的。
(4)、預測
[python]view plain
y_pred=linreg.predict(X_test)
printy_pred
[python]view plain
printtype(y_pred)
輸出結果如下:
5、回歸問題的評價測度
(1) 評價測度
對於分類問題,評價測度是准確率,但這種方法不適用於回歸問題。我們使用針對連續數值的評價測度(evaluation metrics)。
這里介紹3種常用的針對線性回歸的測度。
1)平均絕對誤差(Mean Absolute Error, MAE)
(2)均方誤差(Mean Squared Error, MSE)
(3)均方根誤差(Root Mean Squared Error, RMSE)
這里我使用RMES。
[python]view plain
<prename="code"class="python">#計算Sales預測的RMSE
printtype(y_pred),type(y_test)
printlen(y_pred),len(y_test)
printy_pred.shape,y_test.shape
fromsklearnimportmetrics
importnumpyasnp
sum_mean=0
foriinrange(len(y_pred)):
sum_mean+=(y_pred[i]-y_test.values[i])**2
sum_erro=np.sqrt(sum_mean/50)
#calculateRMSEbyhand
print"RMSEbyhand:",sum_erro
最後的結果如下:
(2)做ROC曲線
[python]view plain
importmatplotlib.pyplotasplt
plt.figure()
plt.plot(range(len(y_pred)),y_pred,'b',label="predict")
plt.plot(range(len(y_pred)),y_test,'r',label="test")
plt.legend(loc="upperright")#顯示圖中的標簽
plt.xlabel("thenumberofsales")
plt.ylabel('valueofsales')
plt.show()
顯示結果如下:(紅色的線是真實的值曲線,藍色的是預測值曲線)
直到這里整個的一次多元線性回歸的預測就結束了。
6、改進特徵的選擇
在之前展示的數據中,我們看到Newspaper和銷量之間的線性關系竟是負關系(不用驚訝,這是隨機特徵抽樣的結果。換一批抽樣的數據就可能為正了),現在我們移除這個特徵,看看線性回歸預測的結果的RMSE如何?
依然使用我上面的代碼,但只需修改下面代碼中的一句即可:
[python]view plain
#
feature_cols=['TV','Radio','Newspaper']
#
X=data[feature_cols]
#
#X=data[['TV','Radio','Newspaper']]#只需修改這里即可<prename="code"class="python"style="font-size:15px;line-height:35px;">X=data[['TV','Radio']]#去掉newspaper其他的代碼不變
# print the first 5 rowsprint X.head()# check the type and shape of Xprint type(X)print X.shape
最後的到的系數與測度如下:
LinearRegression(_X=True, fit_intercept=True, normalize=False)
然後再次使用ROC曲線來觀測曲線的整體情況。我們在將Newspaper這個特徵移除之後,得到RMSE變小了,說明Newspaper特徵可能不適合作為預測銷量的特徵,於是,我們得到了新的模型。我們還可以通過不同的特徵組合得到新的模型,看看最終的誤差是如何的。
備註:
之前我提到了這種錯誤:
註:上面的結果是由train_test_spilit()得到的,但是我不知道為什麼我的版本的sklearn包中居然報錯:
處理方法:1、我後來重新安裝sklearn包。再一次調用時就沒有錯誤了。
2、自己寫函數來認為的隨機構造訓練集和測試集。(這個代碼我會在最後附上。)
這里我給出我自己寫的函數:
㈤ 用Python怎麼算Mean和standard deviation
可以用numpy模塊實現:
importnumpy
defcal_mean_std(sum_list_in):
#type:緩明猜(list)->tuple
N=sum_list_in.__len__()
narray=numpy.array(sum_list_in)
sum=narray.sum()
mean=sum/N
narray_dev=narray-mean
擾型narray_dev=narray_dev*narray_dev
sum_dev=narray_dev.sum()
DEV=float(sum_dev)/float(N)
槐爛STDEV=numpy.math.sqrt(DEV)
print"mean:",mean,";DEV:",DEV,";STDEV:",STDEV
returnmean,DEV,STDEV
均值為mean,方差為DEV,標准差是STDEV
傳入數據是一個list:sum_list_in
㈥ 求一個python程序,計算三個數的平均數和方差
def fangcha():
a=float(raw_input("請輸入a:"))
b=float(raw_input("請輸入b:"))
c=float(raw_input("請輸入C:"))
d=(a+b+c)/3.0
e=((a-d)**2+(b-d)**2+(c-d)**2)/3.0
print "平均數是:%f方差是:%f" %(d,e)
fangcha()
Python2.7可用
㈦ python怎麼做均值方差歸一化
可以用線性歸一化,就是找到最大值和最小值。
平均數是表示一組數據集中趨勢的量數,是指在一組數據中所有數據之和再除以這組數據的個數。它是反映數據集中趨勢的一項指標。解答平均數應用題的關鍵在於確定「總數量」以及和總數量對應的總份數。在統計工作中,平均數(均值)和標准差是描述數據資料集中趨勢和離散程度的兩個最重要的測度值。
㈧ 用python求數據表中數據的均值與方差
以下為代碼:
numstr = input("請輸入全部數據:用英文逗號(,),中文逗號(,),
空格( ),製表符(tab鍵)或換行(請一次性復制過來)中的一種統一分隔數據:")
if "," in numstr:
numlist = numstr.split(",")
elif "," in numstr:
numlist = numstr.split(",")
elif " " in numstr:
numlist = numstr.split(" ")
elif " " in numstr:
numlist = numstr.split(" ")
elif " " in numstr:
numlist = numstr.split(" ")
else:
numlist = [numstr]
numlist = list(map(lambda x:x.strip(",").strip(",").
strip(" ").strip(" ").strip(" "), numlist))
for i in numlist.():
try:
a = float(i)
except:
numlist.remove(i)
print("已過濾字元串:%s"%i)
#好了,上面很多隻是方便用戶而已(但還是有一些有用的),主要是下面
numlist = list(map(lambda x:float(x), numlist))#所有字元串轉為浮點
print("最終數列:",numlist)#輸出最終數列,進行核對
average = sum(numlist)/len(numlist)#用數列和除以出列長度得到平均數
variance = 0#方差,先記為0
for i in numlist:#遍歷列表
variance += (i - average) ** 2#反正就是公式對吧,先加進去
variance /= len(numlist)#還是公式,那一長串還得除以一個數列長度
print("均值:%.2f 方差:%.2f"%(average, variance))#分兩行輸出
以下為輸出效果:
請輸入全部數據:用英文逗號(,),中文逗號(,),空格( ),製表符(tab鍵)或換行(請一次性復制過來)中的一種統一分隔數據:38,22,99,10,99,7, 25,,40
已過濾字元串:
最終數列: [38.0, 22.0, 99.0, 10.0, 99.0, 7.0, 25.0, 40.0]
均值:42.50
方差:1181.75
以下為解析:
平均值的思路就是總和除以列表長度,方差的思路就是把所有的(x-均值)²加起來,最後再除以一個長度即可。
本程序的優點:輸入時逗號後出現空格與不小心多打逗號等情況都不會出問題,可以接受小數,可以先輸出最終數列以供核對。