導航:首頁 > 編程語言 > python循環迭代器

python循環迭代器

發布時間:2024-06-20 15:31:41

python中的迭代器是什麼

迭代器

迭代是訪問集合元素的一種方式。迭代器是一個可以記住遍歷的位置的對象。迭代器對象從集合的第一個元素開始訪問,直到所有的元素被訪問完結束。迭代器只能往前不會後退。

1.可迭代對象

以直接作用於for循環的數據類型有以下幾種:

一類是集合數據類型,如list、tuple、dict、set、str等;

一類是generator,包括生成器和帶yield的generator function。

這些可以直接作用於for循環的對象統稱為可迭代對象:Iterable。

2.判斷是否可以迭代

可以使用isinstance()判斷一個對象是否是Iterable對象:

運行結果:

而生成器不但可以作用於for循環,還可以被next()函數不斷調用並返回下一個值,直到最後拋出StopIteration錯誤表示無法繼續返回下一個值了。

相關推薦:《Python視頻教程》

3.迭代器

可以被next()函數調用並不斷返回下一個值的對象稱為迭代器:Iterator。

運行結果:

4.iter()函數

生成器都是Iterator對象,但list、dict、str雖然是Iterable,卻不是Iterator。

把list、dict、str等Iterable變成Iterator可以使用iter()函數:

運行結果:

總結

·凡是可作用於for循環的對象都是Iterable類型;

·凡是可作用於next()函數的對象都是Iterator類型

·集合數據類型如list、dict、str等是Iterable但不是Iterator,不過可以通過iter()函數獲得一個Iterator對象。

·目的是在使用集合的時候,減少佔用的內容。

相關推薦:

三分鍾看懂什麼是Python生成器

⑵ 如何更好地理解Python迭代器和生成器

迭代器和生成器都是Python中特有的概念,迭代器可以看作是一個特殊的對象,每次調用該對象時會返回自身的下一個元素,從實現上來看,一個可迭代的對象必須是定義了__iter__()方法的對象,而一個迭代器必須是定義了__iter__()方法和next()方法的對象。生成器的概念要比迭代器稍顯復雜,因為生成器是能夠返回一個迭代器的函數,其最大的作用是將輸入對象返回為一個迭代器。Python中使用了迭代的概念,是因為當需要循環遍歷一個較大的對象時,傳統的內存載入方式會消耗大量的內存,不如需要時讀取一個元素的方式更為經濟快捷。
迭代器
迭代器(iterator)是一種對象,它能夠用來遍歷標准模板庫容器中的部分或全部元素,每個迭代器對象代表容器中的確定的地址。迭代器修改了常規指針的介面,所謂迭代器是一種概念上的抽象:那些行為上像迭代器的東西都可以叫做迭代器。然而迭代器有很多不同的能力,它可以把抽象容器和通用演算法有機的統一起來。
迭代器提供一些基本操作符:*、++、==、!=、=。這些操作和C/C++「操作array元素」時的指針介面一致。不同之處在於,迭代器是個所謂的復雜的指針,具有遍歷復雜數據結構的能力。其下層運行機製取決於其所遍歷的數據結構。因此,每一種容器型別都必須提供自己的迭代器。事實上每一種容器都將其迭代器以嵌套的方式定義於內部。因此各種迭代器的介面相同,型號卻不同。這直接導出了泛型程序設計的概念:所有操作行為都使用相同介面,雖然它們的型別不同。
迭代器使開發人員能夠在類或結構中支持foreach迭代,而不必整個實現IEnumerable或者IEnumerator介面。只需提供一個迭代器,即可遍歷類中的數據結構。當編譯器檢測到迭代器時,將自動生成IEnumerable介面或者IEnumerator介面的Current,MoveNext和Dispose方法。
生成器
生成器是一次生成一個值的特殊類型函數。可以將其視為可恢復函數。調用該函數將返回一個可用於生成連續 x 值的生成器【Generator】
簡單的說就是在函數的執行過程中,yield語句會把你需要的值返回給調用生成器的地方,然後退出函數,下一次調用生成器函數的時候又從上次中斷的地方開始執行,而生成器內的所有變數參數都會被保存下來供下一次使用。

⑶ Python中的「迭代」詳解

迭代器模式:一種惰性獲取數據項的方式,即按需一次獲取一個數據項。

所有序列都是可以迭代的。我們接下來要實現一個 Sentence(句子)類,我們向這個類的構造方法傳入包含一些文本的字元串,然後可以逐個單詞迭代。

接下來測試 Sentence 實例能否迭代

序列可以迭代的原因:

iter()

解釋器需要迭代對象 x 時,會自動調用iter(x)。

內置的 iter 函數有以下作用:

由於序列都實現了 __getitem__ 方法,所以都可以迭代。

可迭代對象:使用內置函數 iter() 可以獲取迭代器的對象。

與迭代器的關系:Python 從可迭代對象中獲取迭代器。

下面用for循環迭代一個字元串,這里字元串 'abc' 是可迭代的對象,用 for 循環迭代時是有生成器,只是 Python 隱藏了。

如果沒有 for 語句,使用 while 循環模擬,要寫成下面這樣:

Python 內部會處理 for 循環和其他迭代上下文(如列表推導,元組拆包等等)中的 StopIteration 異常。

標準的迭代器介面有兩個方法:

__next__ :返回下一個可用的元素,如果沒有元素了,拋出 StopIteration 異常。

__iter__ :返回 self,以便在需要使用可迭代對象的地方使用迭代器,如 for 循環中。

迭代器:實現了無參數的 __next__ 方法,返回序列中的下一個元素;如果沒有元素了,那麼拋出 StopIteration 異常。Python 中的迭代器還實現了 __iter__ 方法,因此迭代器也可以迭代。

接下來使用迭代器模式實現 Sentence 類:

注意, 不要 在 Sentence 類中實現 __next__ 方法,讓 Sentence 實例既是可迭代對象,也是自身的迭代器。

為了「支持多種遍歷」,必須能從同一個可迭代的實例中獲取多個獨立的迭代器,而且各個迭代器要能維護自身的內部狀態,因此這一模式正確的實現方式是,每次調用 iter(my_iterable) 都新建一個獨立的迭代器。

所以總結下來就是:

實現相同功能,但卻符合 Python 習慣的方式是,用生成器函數代替 SentenceIteror 類。

只要 Python 函數的定義體中有 yield 關鍵字,該函數就是生成器函數。調用生成器函數,就會返回一個生成器對象。

生成器函數會創建一個生成器對象,包裝生成器函數的定義體,把生成器傳給 next(...) 函數時,生成器函數會向前,執行函數定義體中的下一個 yield 語句,返回產出的值,並在函數定義體的當前位置暫停,。最終,函數的定義體返回時,外層的生成器對象會拋出 StopIteration 異常,這一點與迭代器協議一致。

如今這一版 Sentence 類相較之前簡短多了,但是還不夠慵懶。 惰性 ,是如今人們認為最好的特質。惰性實現是指盡可能延後生成值,這樣做能節省內存,或許還能避免做無用的處理。

目前實現的幾版 Sentence 類都不具有惰性,因為 __init__ 方法急迫的構建好了文本中的單詞列表,然後將其綁定到 self.words 屬性上。這樣就得處理整個文本,列表使用的內存量可能與文本本身一樣多(或許更多,取決於文本中有多少非單詞字元)。

re.finditer 函數是 re.findall 函數的惰性版本,返回的是一個生成器,按需生成 re.MatchObject 實例。我們可以使用這個函數來讓 Sentence 類變得懶惰,即只在需要時才生成下一個單詞。

標准庫提供了很多生成器函數,有用於逐行迭代純文本文件的對象,還有出色的 os.walk 函數等等。本節專注於通用的函數:參數為任意的可迭代對象,返回值是生成器,用於生成選中的、計算出的和重新排列的元素。

第一組是用於 過濾 的生成器函數:從輸入的可迭代對象中產出元素的子集,而且不修改元素本身。這種函數大多數都接受一個斷言參數(predicate),這個參數是個 布爾函數 ,有一個參數,會應用到輸入中的每個元素上,用於判斷元素是否包含在輸出中。

以下為這些函數的演示:

第二組是用於映射的生成器函數:在輸入的單個/多個可迭代對象中的各個元素上做計算,然後返回結果。

以下為這些函數的用法:

第三組是用於合並的生成器函數,這些函數都可以從輸入的多個可迭代對象中產出元素。

以下為演示:

第四組是從一個元素中產出多個值,擴展輸入的可迭代對象。

以下為演示:

第五組生成器函數用於產出輸入的可迭代對象中的全部元素,不過會以某種方式重新排列。

下面的函數都接受一個可迭代的對象,然後返回單個結果,這種函數叫「歸約函數」,「合攏函數」或「累加函數」,其實,這些內置函數都可以用 functools.rece 函數實現,但內置更加方便,而且還有一些優點。

參考教程:
《流暢的python》 P330 - 363

⑷ Python基礎之迭代器

一.什麼是迭代器

迭代器是用來迭代取值的工具。

而涉及到把多個值循環取出來的類型有:列表,字元串,元組,欄位,集合,打開文件等。通過使用的遍歷方式有for···in···,while等,但是,這些方式只適用於有索引的數據類型。為了解決索引取的局限性,python提供了一種 不依賴於索引的取值方式:迭代器

注意:

二.可迭代對象

可迭代對象:但凡內置有__iter__方法的都稱為可迭代對象

常見的可迭代對象:

1.集合數據類型,如list,tuple,dict,set,str等

2.生成器,包括生成器和帶yield的生成器函數。

三.如何創建迭代器

迭代器是一個包含數個值的對象。

迭代器是可以迭代的對象,這意味著您可以遍歷所有值。

從技術上講,在Python中,迭代器是實現迭代器協議的對象,該協議由方法 __iter__() 和 __next__() 組成。

簡而言之,一個類裡面實現了__iter__()和__next__()這兩個魔法方法,那麼這個類的對象就是可迭代對象。

四.迭代器的優缺點

1.優點

2.缺點

五.迭代器示例

另外,如果類Stu繼承了Iterator,那麼Stu可以不用實現__iter__()方法

遍歷迭代器

StopIteration

如果你有足夠的 next() 語句,或者在 for 循環中使用,則上面的例子將永遠進行下去。

為了防止迭代永遠進行,我們可以使用 StopIteration 語句。

在 __next__() 方法中,如果迭代完成指定的次數,我們可以添加一個終止條件來引發錯誤

⑸ Python中的for循環、可迭代對象、迭代器和生成器-

問題:

「迭代是重復反饋過程的活動,其目的通常是為了逼近所需目標或結果。」在Python中,可迭代對象、迭代器、for循環都是和「迭代」密切相關的知識點。

下面我們試著通過實現自定義一下list的迭代過程:

迭代器和生成器總是會被同時提起,那麼它們之間有什麼關聯呢——生成器是一種特殊的迭代器。

閱讀全文

與python循環迭代器相關的資料

熱點內容
家用雲伺服器如何注冊 瀏覽:622
電腦文件夾打開變小了 瀏覽:514
程序員都特別在演算法上有研究 瀏覽:362
愛瘋app資源庫如何不顯示在主屏幕 瀏覽:984
伺服器失聯是為什麼 瀏覽:842
風控算程序員 瀏覽:630
加密狗遠程修改 瀏覽:723
我的世界網易伺服器的地址是什麼 瀏覽:924
地谷輪壓縮機與艾默生 瀏覽:268
太力真空壓縮袋好嗎 瀏覽:915
中老年程序員寫代碼 瀏覽:16
加密貨幣白皮書怎麼寫 瀏覽:475
中文版的pdf 瀏覽:107
else在python的用法 瀏覽:549
if命令cmd 瀏覽:688
花書pdf 瀏覽:272
wps合成pdf文件 瀏覽:807
python教程pdf免費下載 瀏覽:959
程序員需求表 瀏覽:642
為什麼安卓不能用qq登錄 瀏覽:692