Ⅰ 如何用python實現含有虛擬自變數的回歸
參考資料:
DataRobot | Ordinary Least Squares in Python
DataRoboe | Multiple Regression using Statsmodels
AnalyticsVidhya | 7 Types of Regression Techniques you should know!
Ⅱ Python最小二乘法擬合只能return一個方程嗎
最小二乘法是一種數學優化技術,它通過最小化誤差的平方和尋找數據的最佳函數匹配。優化是找到最小值或等式的數值解的問題。而線性回歸就是要求樣本回歸函數盡可能好地擬合目標函數值,也就是說,這條直線應該盡可能的處於樣本數據的中心位置。因此,選擇最佳擬合曲線的標准可以確定為:使總的擬合誤差(即總殘差)達到最小。如果用p表示函數中需要確定的參數,那麼目標就是找到一組p,使得下面的函數S的值最小:
Ⅲ python_numpy最小二乘法的曲線擬合
在了解了最小二乘法的基本原理之後 python_numpy實用的最小二乘法理解 ,就可以用最小二乘法做曲線擬合了
從結果中可以看出,直線擬合並不能對擬合數據達到很好的效果,下面我們介紹一下曲線擬合。
b=[y1]
[y2]
......
[y100]
解得擬合函數的系數[a,b,c.....d]
CODE:
根據結果可以看到擬合的效果不錯。
我們可以通過改變
來調整擬合效果。
如果此處我們把擬合函數改為最高次為x^20的多項式
所得結果如下:
矯正 過擬合 現象
在保持擬合函數改為最高次為x^20的多項式的條件下,增大樣本數:
通過結果可以看出,過擬合現象得到了改善。