『壹』 python圖像處理
創建一個簡單的圖像與圖像混合
1.1 在Image模塊中,提供了創建圖像的方法。主要是通過**Image.new(mode, size, color)**實現,該方法傳入三個參數:
mode:圖像的創建模式
size:圖像的大小
color:圖像的顏色
用該方法可以創建一個簡單的圖像,之後我們可以通過save方法將圖像保存:
1.2生成圖片如下
1.3 圖像混合
透明度混合
透明度混合主要是使用**Image中的blend(im1, im2, alpha)**方法,對該方法的解釋如下:
im1:Image對象,在混合的過程中,透明度設置為(1-apha)
im2:Image對象,在混合的過程中,透明度設置為(apha)
alpha:透明度,取值是0-1。當透明度為0是,顯示im1對象;當透明度為1時,顯示im2對象
代碼實現如下
1.4原圖和混合圖的對比
1.5 遮罩混合
通過Image.composite(im1, im2, mask)方法實現遮罩混合。三個參數都是Image對象,該方法的作用就是使用mask來混合im1和im2。
1.6im1、im2和遮罩混合效果對比如下
『貳』 怎樣使用Python圖像處理
Python圖像處理是一種簡單易學,功能強大的解釋型編程語言,它有簡潔明了的語法,高效率的高層數據結構,能夠簡單而有效地實現面向對象編程,下文進行對Python圖像處理進行說明。
當然,首先要感謝「戀花蝶」,是他的文章「用Python圖像處理 」 幫我堅定了用Python和PIL解決問題的想法,對於PIL的一些介紹和基本操作,可以看看這篇文章。我這里主要是介紹點我在使用過程中的經驗。
PIL可以對圖像的顏色進行轉換,並支持諸如24位彩色、8位灰度圖和二值圖等模式,簡單的轉換可以通過Image.convert(mode)函數完 成,其中mode表示輸出的顏色模式。例如''L''表示灰度,''1''表示二值圖模式等。
但是利用convert函數將灰度圖轉換為二值圖時,是採用固定的閾 值127來實現的,即灰度高於127的像素值為1,而灰度低於127的像素值為0。為了能夠通過自定義的閾值實現灰度圖到二值圖的轉換,就要用到 Image.point函數。
深度剖析Python語法功能
深度說明Python應用程序特點
對Python資料庫進行學習研究
Python開發人員對Python經驗之談
對Python動態類型語言解析
Image.point函數有多種形式,這里只討論Image.point(table, mode),利用該函數可以通過查表的方式實現像素顏色的模式轉換。其中table為顏色轉換過程中的映射表,每個顏色通道應當有256個元素,而 mode表示所輸出的顏色模式,同樣的,''L''表示灰度,''1''表示二值圖模式。
可見,轉換過程的關鍵在於設計映射表,如果只是需要一個簡單的箝位值,可以將table中高於或低於箝位值的元素分別設為1與0。當然,由於這里的table並沒有什麼特殊要求,所以可以通過對元素的特殊設定實現(0, 255)范圍內,任意需要的一對一映射關系。
示例代碼如下:
import Image # load a color image im = Image.open(''fun.jpg'') # convert to grey level image Lim = im.convert(''L'') Lim.save(''fun_Level.jpg'') # setup a converting table with constant threshold threshold = 80 table = [] for i in range(256): if i < threshold: table.append(0) else: table.append(1) # convert to binary image by the table bim = Lim.point(table, ''1'') bim.save(''fun_binary.jpg'')
IT部分通常要完成的任務相當繁重但支撐這些工作的資源卻很少,這已經成為公開的秘密。任何承諾提高編碼效率、降低軟體總成本的IT解決方案都應該進行 周到的考慮。Python圖像處理所具有的一個顯著優勢就是可以在企業的軟體創建和維護階段節約大量資金,而這兩個階段的軟體成本佔到了軟體整個生命周期中總成本 的50%到95%。
Python清晰可讀的語法使得軟體代碼具有異乎尋常的易讀性,甚至對那些不是最初接觸和開發原始項目的程序員都 能具有這樣的強烈感覺。雖然某些程序員反對在Python代碼中大量使用空格。
不過,幾乎人人都承認Python圖像處理的可讀性遠勝於C或者Java,後兩 者都採用了專門的字元標記代碼塊結構、循環、函數以及其他編程結構的開始和結束。提倡Python的人還宣稱,採用這些字元可能會產生顯著的編程風格差 異,使得那些負責維護代碼的人遭遇代碼可讀性方面的困難。轉載
『叄』 python可以用來處理圖像嗎
可以的,
PythonWare公司提供了免費的Python圖像處理工具包PIL(Python Image Library),該軟體包提供了基本的圖像處理功能,如:
改變圖像大小,旋轉圖像,圖像格式轉換,色場空間轉換,圖像增強,直方圖處理,插值和濾波等等。雖然在這個軟體包上要實現類似MATLAB中的復雜的圖像處理演算法並不太適合,但是Python的快速開發能力以及面向對象等等諸多特點使得它非常適合用來進行原型開發。
在PIL中,任何一副圖像都是用一個Image對象表示,而這個類由和它同名的模塊導出,因此,最簡單的形式是這樣的:
import Image img = Image.open(「dip.jpg」)
注意:第一行的Image是模塊名;第二行的img是一個Image對象;
Image類是在Image模塊中定義的。關於Image模塊和Image類,切記不要混淆了。現在,我們就可以對img進行各種操作了,所有對img的
操作最終都會反映到到dip.img圖像上。
PIL提供了豐富的功能模塊:Image,ImageDraw,ImageEnhance,ImageFile等等。最常用到的模塊是
Image,ImageDraw,ImageEnhance這三個模塊。下面我對此分別做一介紹。關於其它模塊的使用請參見說明文檔.有關PIL軟體包和
相關的說明文檔可在PythonWare的站點www.Pythonware.com上獲得。
Image模塊:
Image模塊是PIL最基本的模塊,其中導出了Image類,一個Image類實例對象就對應了一副圖像。同時,Image模塊還提供了很多有用的函數。
(1)打開一文件:
import Image img = Image.open(「dip.jpg」)
這將返回一個Image類實例對象,後面的所有的操作都是在img上完成的。
(2)調整文件大小:
import Image img = Image.open("img.jpg") new_img = img.resize
((128,128),Image.BILINEAR) new_img.save("new_img.jpg")
原來的圖像大小是256x256,現在,保存的new_img.jpg的大小是128x128。
就是這么簡單,需要說明的是Image.BILINEAR指定採用雙線性法對像素點插值。
在批處理或者簡單的Python圖像處理任務中,採用Python和PIL(Python Image Library)的組合來完成圖像處理任務是一個很不錯的選擇。設想有一個需要對某個文件夾下的所有圖像將對比度提高2倍的任務。用Python來做將是十分簡單的。當然,我也不得不承認Python在圖像處理方面的功能還比較弱,顯然還不適合用來進行濾波、特徵提取等等一些更為復雜的應用。我個人的觀點是,當你要實現這些「高級」的演算法的時候,好吧,把它交給MATLAB去完成。但是,如果你面對的只是一個通常的不要求很復雜演算法的圖像處理任務,那麼,Python圖像處理應該才是你的最佳搭檔。
『肆』 opencv 圖像識別 c python哪個快
兩者主要的區別在於介面和效率。
實際上Python和C++的OpenCV介面幾乎一樣,不同的是用C++的話,矩陣用的是cv::Mat,Python裡面用的是numpy.array,用法和介面都不一樣,但文檔豐富,使用也非常方便,原理也相似。
效率方面,Python的介面實際上只是一層Binding,最終還是調用libopencv_*.so裡面的函數,所以在OpenCV這一層效率與C++是完全一致的。唯一不同的就是它的numpy.array和cv::Mat。Numpy底層也是使用C Extension的方法寫,但相比C++版的OpenCV介面,Python的介面需要把Numpy的數據轉化成OpenCV的C介面可接受的輸入。
實測Python寫的程序會慢,但具體慢多少並沒有測試數據可支撐。
用Python寫實際上也不會比C++開發快多少,因為介面都是一樣的,我建議不如直接用C++寫。
簡單說兩句,選python還是C++,考慮下面幾個問題
1. 性能壓力在哪裡?python的GIL使得多線程不能多核並行,必須用多進程,而且天生python要比c++慢一些。因此如果是cpu密集型,建議用C++,如果是IO密集型,python沒有那麼大的劣勢。
2. 開發成本高還是運行成本高,一個開發人員一個月多少錢,一個伺服器一個月多少錢,通常來說前者越來越貴而後者反之,權衡下利弊,C++開發要比python慢,在性能都達標的情況下,如果節省的伺服器成本能抵過開發成本,用C++,反之用python。
1,差不多,基本調用參數都一樣,格式符合各自語言規范。
2,在我開發的程序中python比cpp明顯有差距,但是換到工作用的電腦上這個差距就看不錯來了,so,硬體配置好一些,用python做實時也是沒有問題的。外,感覺同樣的函數python就是比cpp慢一些,雖然上面說到python底層用的也是lib。
3,基本一樣。(python可能功能稍微差一點2.4.8版本有個函數沒在python中找到,但是也就那一個)
4,python比較簡單,開發可能快一點(主要是軟體的其他部分可能比較容易開發)。
『伍』 python圖像處理庫 哪個好 知乎
1.scikit-image
scikit-image是一個開源的Python包,適用於numpy數組。它實現了用於研究,教育和工業應用的演算法和實用工具。即使是那些剛接觸Python生態系統的人,它也是一個相當簡單直接的庫。此代碼是由活躍的志願者社區編寫的,具有高質量和同行評審的性質。
2.Numpy
Numpy是Python編程的核心庫之一,並為數組提供支持。圖像本質上是包含數據點像素的標准Numpy數組。因此,我們可以通過使用基本的NumPy操作,例如切片、掩膜和花式索引,來修改圖像的像素值。可以使用skimage載入圖像並使用matplotlib顯示圖像。
3.Scipy
scipy是Python的另一個類似Numpy的核心科學模塊,可用於基本的圖像操作和處理任務。特別是子模塊scipy.ndimage,提供了在n維NumPy數組上操作的函數。該包目前包括線性和非線性濾波,二值形態學,B樣條插值和對象測量等功能函數。
4. PIL/Pillow
PIL是Python編程語言的一個免費庫,它支持打開、操作和保存許多不同的文件格式的圖像。然而,隨著2009年的最後一次發布,它的開發停滯不前。但幸運的是還有Pillow,一個PIL積極開發的且更容易安裝的分支,它能運行在所有主要的操作系統,並支持Python3。這個庫包含了基本的圖像處理功能,包括點運算、使用一組內置卷積核的濾波和色彩空間的轉換。
5.OpenCV-Python
OpenCV是計算機視覺應用中應用最廣泛的庫之一
。OpenCV-Python是OpenCV的python版API。OpenCV-Python的優點不只有高效,這源於它的內部組成是用C/C++編寫的,而且它還容易編寫和部署。這使得它成為執行計算密集型計算機視覺程序的一個很好的選擇。
6.SimpleCV
SimpleCV也是一個用於構建計算機視覺應用程序的開源框架。有了它,你就可以訪問幾個高性能的計算機視覺庫,如OpenCV,而且不需要先學習了解位深度、文件格式、顏色空間等。它的學習曲線大大小於OpenCV,正如它們的口號所說「計算機視覺變得簡單」。
7.Mahotas
Mahotas是另一個計算機視覺和圖像處理的Python庫。它包括了傳統的圖像處理功能例如濾波和形態學操作以及更現代的計算機視覺功能用於特徵計算,包括興趣點檢測和局部描述符。該介面是Python語言,適合於快速開發,但是演算法是用C語言實現的,並根據速度進行了調優。Mahotas庫速度快,代碼簡潔,甚至具有最小的依賴性。
8.SimpleITK
ITK或者Insight Segmentation and Registration
Toolkit是一個開源的跨平台系統,為開發人員提供了一套廣泛的圖像分析軟體工具
。其中,SimpleITK是建立在ITK之上的簡化層,旨在促進其在快速原型設計、教育、解釋語言中的應用。SimpleITK是一個圖像分析工具包,包含大量支持一般過濾操作、圖像分割和匹配的組件。SimpleITK本身是用C++寫的,但是對於包括Python以內的大部分編程語言都是可用的。
9.pgmagick
pgmagick是GraphicsMagick庫的一個基於python的包裝。GraphicsMagick圖像處理系統有時被稱為圖像處理的瑞士軍刀。它提供了一個具有強大且高效的工具和庫集合,支持以88種主要格式讀取、寫入和操作圖像。
10.Pycairo
Pycairo是圖像處理庫cairo的一組Python捆綁。Cairo是一個用於繪制矢量圖形的2D圖形庫。矢量圖形很有趣,因為它們在調整大小或轉換時不會失去清晰度。Pycairo是cairo的一組綁定,可用於從Python調用cairo命令。
『陸』 Python性能分析指南
原文來源 | Huy Nguyen
譯文來源 | 開源中國
雖然你所寫的每個Python程序並不總是需要嚴密的性能分析,但是當這樣的問題出現時,如果能知道Python生態系統中的許多種工具,這樣總是可以讓人安心的。
分析一個程序的性能可以歸結為回答4個基本的問題:
1.它運行的有多塊?
2.那裡是速度的瓶頸?
3.它使用了多少內存?
4.哪裡發生了內存泄漏?
下面,我們將用一些很酷的工具,深入細節的回答這些問題。
使用time工具粗糙定時
首先,我們可以使用快速然而粗糙的工具:古老的unix工具time,來為我們的代碼檢測運行時間。
上面三個輸入變數的意義在文章 stackoverflow article 中有詳細介紹。簡單的說:
real – 表示實際的程序運行時間
user – 表示程序在用戶態的cpu總時間
sys – 表示在內核態的cpu總時間
通過sys和user時間的求和,你可以直觀的得到系統上沒有其他程序運行時你的程序運行所需要的CPU周期。
若sys和user時間之和遠遠少於real時間,那麼你可以猜測你的程序的主要性能問題很可能與IO等待相關。
使用計時上下文管理器進行細粒度計時
我們的下一個技術涉及訪問細粒度計時信息的直接代碼指令。這是一小段代碼,我發現使用專門的計時測量是非常重要的:
timer.py
為了使用它,你需要用Python的with關鍵字和Timer上下文管理器包裝想要計時的代碼塊。它將會在你的代碼塊開始執行的時候啟動計時器,在你的代碼塊結束的時候停止計時器。
這是一個使用上述代碼片段的例子:
我經常將這些計時器的輸出記錄到文件中,這樣就可以觀察我的程序的性能如何隨著時間進化。
使用分析器逐行統計時間和執行頻率
Robert Kern有一個稱作line_profiler的不錯的項目,我經常使用它查看我的腳步中每行代碼多快多頻繁的被執行。
想要使用它,你需要通過pip安裝該python包:
一旦安裝完成,你將會使用一個稱做「line_profiler」的新模組和一個「kernprof.py」可執行腳本。
想要使用該工具,首先修改你的源代碼,在想要測量的函數上裝飾@profile裝飾器。不要擔心,你不需要導入任何模組。kernprof.py腳本將會在執行的時候將它自動地注入到你的腳步的運行時。
primes.py
一旦你已經設置好了@profile裝飾器,使用kernprof.py執行你的腳步。
-l選項通知kernprof注入@profile裝飾器到你的腳步的內建函數,-v選項通知kernprof在腳本執行完畢的時候顯示計時信息。上述腳本的輸出看起來像這樣:
尋找具有高Hits值或高Time值的行。這些就是可以通過優化帶來最大改善的地方。
程序使用了多少內存?
現在我們對計時有了較好的理解,那麼讓我們繼續弄清楚程序使用了多少內存。我們很幸運,Fabian Pedregosa模仿Robert Kern的line_profiler實現了一個不錯的內存分析器。
首先使用pip安裝:
(這里建議安裝psutil包,因為它可以大大改善memory_profiler的性能)。
就像line_profiler,memory_profiler也需要在感興趣的函數上面裝飾@profile裝飾器:
想要觀察你的函數使用了多少內存,像下面這樣執行:
一旦程序退出,你將會看到看起來像這樣的輸出:
line_profiler和memory_profiler的IPython快捷方式
memory_profiler和line_profiler有一個鮮為人知的小竅門,兩者都有在IPython中的快捷命令。你需要做的就是在IPython會話中輸入以下內容:
在這樣做的時候你需要訪問魔法命令%lprun和%mprun,它們的行為類似於他們的命令行形式。主要區別是你不需要使用@profiledecorator來修飾你要分析的函數。只需要在IPython會話中像先前一樣直接運行分析:
這樣可以節省你很多時間和精力,因為你的源代碼不需要為使用這些分析命令而進行修改。
內存泄漏在哪裡?
cPython解釋器使用引用計數做為記錄內存使用的主要方法。這意味著每個對象包含一個計數器,當某處對該對象的引用被存儲時計數器增加,當引用被刪除時計數器遞減。當計數器到達零時,cPython解釋器就知道該對象不再被使用,所以刪除對象,釋放佔用的內存。
如果程序中不再被使用的對象的引用一直被佔有,那麼就經常發生內存泄漏。
查找這種「內存泄漏」最快的方式是使用Marius Gedminas編寫的objgraph,這是一個極好的工具。該工具允許你查看內存中對象的數量,定位含有該對象的引用的所有代碼的位置。
一開始,首先安裝objgraph:
一旦你已經安裝了這個工具,在你的代碼中插入一行聲明調用調試器:
最普遍的對象是哪些?
在運行的時候,你可以通過執行下述指令查看程序中前20個最普遍的對象:
哪些對象已經被添加或刪除?
我們也可以查看兩個時間點之間那些對象已經被添加或刪除:
誰引用著泄漏的對象?
繼續,你還可以查看哪裡包含給定對象的引用。讓我們以下述簡單的程序做為一個例子:
想要看看哪裡包含變數x的引用,執行objgraph.show_backref()函數:
該命令的輸出應該是一副PNG圖像,保存在/tmp/backrefs.png,它看起來是像這樣:
在運行的時候,你可以通過執行下述指令查看程序中前20個最普遍的對象:最下面有紅字的盒子是我們感興趣的對象。我們可以看到,它被符號x引用了一次,被列表y引用了三次。如果是x引起了一個內存泄漏,我們可以使用這個方法,通過跟蹤它的所有引用,來檢查為什麼它沒有自動的被釋放。
回顧一下,objgraph 使我們可以:
顯示占據python程序內存的頭N個對象
顯示一段時間以後哪些對象被刪除活增加了
在我們的腳本中顯示某個給定對象的所有引用
努力與精度
在本帖中,我給你顯示了怎樣用幾個工具來分析python程序的性能。通過這些工具與技術的武裝,你可以獲得所有需要的信息,來跟蹤一個python程序中大多數的內存泄漏,以及識別出其速度瓶頸。
對許多其他觀點來說,運行一次性能分析就意味著在努力目標與事實精度之間做出平衡。如果感到困惑,那麼就實現能適應你目前需求的最簡單的解決方案。
參考
stack overflow – time explained(堆棧溢出 – 時間解釋)
line_profiler(線性分析器)
memory_profiler(內存分析器)
objgraph(對象圖)
end