導航:首頁 > 編程語言 > python聚類

python聚類

發布時間:2022-01-15 09:49:57

python 數據在進行k-means聚類時遇到np.nan, 還可以進行數據聚類嗎

遇到nan建議在數據預處理階段用fillna進行填充,要不然數據不幹凈容易導致聚類結果不理想

❷ python對數據進行聚類怎麼顯示數據分類

將其整理成數據集為:
[ [1,0,"yes"],[1,1,"yes"],[0,1,"yes"],[0,0,"no"],[1,0,"no"] ]
演算法過程:

1、計算原始的信息熵。
2、依次計算數據集中每個樣本的每個特徵的信息熵。
3、比較不同特徵信息熵的大小,選出信息熵最大的特徵值並輸出。
運行結果:
col : 0 curInfoGain : 2.37744375108 baseInfoGain : 0.0
col : 1 curInfoGain : 1.37744375108 baseInfoGain : 2.37744375108
bestInfoGain : 2.37744375108 bestFeature: 0
結果分析:
說明按照第一列,即有無喉結這個特徵來進行分類的效果更好。
思考:
1、能否利用決策樹演算法,將樣本最終的分類結果進行輸出?如樣本1,2,3屬於男性,4屬於女性。

2、示常式序生成的決策樹只有一層,當特徵量增多的時候,如何生成具有多層結構的決策樹?
3、如何評判分類結果的好壞?
在下一篇文章中,我將主要對以上三個問題進行分析和解答。如果您也感興趣,歡迎您訂閱我的文章,也可以在下方進行評論,如果有疑問或認為不對的地方,您也可以留言,我將積極與您進行解答。
完整代碼如下:
from math import log
"""
計算信息熵
"""
def calcEntropy(dataset):
diclabel = {} ## 標簽字典,用於記錄每個分類標簽出現的次數
for record in dataset:
label = record[-1]
if label not in diclabel.keys():
diclabel[label] = 0
diclabel[label] += 1
### 計算熵
entropy = 0.0
cnt = len(dataset)
for label in diclabel.keys():
prob = float(1.0 * diclabel[label]/cnt)
entropy -= prob * log(prob,2)
return entropy
def initDataSet():
dataset = [[1,0,"yes"],[1,1,"yes"],[0,1,"yes"],[0,0,"no"],[1,0,"no"]]
label = ["male","female"]
return dataset,label
#### 拆分dataset ,根據指定的過濾選項值,去掉指定的列形成一個新的數據集
def splitDataset(dataset , col, value):
retset = [] ## 拆分後的數據集
for record in dataset:
if record[col] == value :
recedFeatVec = record[:col]
recedFeatVec.extend(record[col+1:]) ### 將指定的列剔除
retset.append(recedFeatVec) ### 將新形成的特徵值列表追加到返回的列表中
return retset
### 找出信息熵增益最大的特徵值
### 參數:
### dataset : 原始的數據集
def findBestFeature(dataset):
numFeatures = len(dataset[0]) - 1 ### 特徵值的個數
baseEntropy = calcEntropy(dataset) ### 計算原始數據集的熵
baseInfoGain = 0.0 ### 初始信息增益
bestFeature = -1 ### 初始的最優分類特徵值索引
### 計算每個特徵值的熵
for col in range(numFeatures):
features = [record[col] for record in dataset] ### 提取每一列的特徵向量 如此處col= 0 ,則features = [1,1,0,0]
uniqueFeat = set(features)
curInfoGain = 0 ### 根據每一列進行拆分,所獲得的信息增益
for featVal in uniqueFeat:
subDataset = splitDataset(dataset,col,featVal) ### 根據col列的featVal特徵值來對數據集進行劃分
prob = 1.0 * len(subDataset)/numFeatures ### 計運算元特徵數據集所佔比例
curInfoGain += prob * calcEntropy(subDataset) ### 計算col列的特徵值featVal所產生的信息增益
# print "col : " ,col , " featVal : " , featVal , " curInfoGain :" ,curInfoGain ," baseInfoGain : " ,baseInfoGain
print "col : " ,col , " curInfoGain :" ,curInfoGain ," baseInfoGain : " ,baseInfoGain
if curInfoGain > baseInfoGain:
baseInfoGain = curInfoGain
bestFeature = col
return baseInfoGain,bestFeature ### 輸出最大的信息增益,以獲得該增益的列
dataset,label = initDataSet()
infogain , bestFeature = findBestFeature(dataset)
print "bestInfoGain :" , infogain, " bestFeature:",bestFeature

❸ 如何用python對文本進行聚類

實現原理:
首先從Tourist_spots_5A_BD.txt中讀取景點信息,然後通過調用無界面瀏覽器PhantomJS(Firefox可替代)訪問網路鏈接"http://ke..com/",通過Selenium獲取輸入對話框ID,輸入關鍵詞如"故宮",再訪問該網路頁面。最後通過分析DOM樹結構獲取摘要的ID並獲取其值。核心代碼如下:
driver.find_elements_by_xpath("//div[@class='lemma-summary']/div")

PS:Selenium更多應用於自動化測試,推薦Python爬蟲使用scrapy等開源工具。
# coding=utf-8
"""
Created on 2015-09-04 @author: Eastmount
"""

import time
import re
import os
import sys
import codecs
import shutil
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
import selenium.webdriver.support.ui as ui
from selenium.webdriver.common.action_chains import ActionChains

#Open PhantomJS
driver = webdriver.PhantomJS(executable_path="G:\phantomjs-1.9.1-windows\phantomjs.exe")
#driver = webdriver.Firefox()
wait = ui.WebDriverWait(driver,10)

#Get the Content of 5A tourist spots
def getInfobox(entityName, fileName):
try:
#create paths and txt files
print u'文件名稱: ', fileName
info = codecs.open(fileName, 'w', 'utf-8')

#locate input notice: 1.visit url by unicode 2.write files
#Error: Message: Element not found in the cache -
# Perhaps the page has changed since it was looked up
#解決方法: 使用Selenium和Phantomjs
print u'實體名稱: ', entityName.rstrip('\n')
driver.get("http://ke..com/")
elem_inp = driver.find_element_by_xpath("//form[@id='searchForm']/input")
elem_inp.send_keys(entityName)
elem_inp.send_keys(Keys.RETURN)
info.write(entityName.rstrip('\n')+'\r\n') #codecs不支持'\n'換行
time.sleep(2)

#load content 摘要
elem_value = driver.find_elements_by_xpath("//div[@class='lemma-summary']/div")
for value in elem_value:
print value.text
info.writelines(value.text + '\r\n')
time.sleep(2)

except Exception,e: #'utf8' codec can't decode byte
print "Error: ",e
finally:
print '\n'
info.close()

#Main function
def main():
#By function get information
path = "BaiSpider\\"
if os.path.isdir(path):
shutil.rmtree(path, True)
os.makedirs(path)
source = open("Tourist_spots_5A_BD.txt", 'r')
num = 1
for entityName in source:
entityName = unicode(entityName, "utf-8")
if u'故宮' in entityName: #else add a '?'
entityName = u'北京故宮'
name = "%04d" % num
fileName = path + str(name) + ".txt"
getInfobox(entityName, fileName)
num = num + 1
print 'End Read Files!'
source.close()
driver.close()

if __name__ == '__main__':
main()

❹ python聚類每次結果相同么

python中用pdf_multivariate求解多維密度分布,然後用plot_surface畫三維曲面圖; 另外用matlab也!

❺ python聚類分析需要多長時間

有沒有編程基礎?如果以前學過其他語言,底子比較好,那麼從開始學Python到寫出一個最簡單的爬蟲幾天就可以搞定。如果沒有編程基礎,對普通人來說需要的時間就長了,光是學Python就很費時間,因為要打基矗

❻ 如何用Python對人員軌跡聚類

把你的 xy 變換成 onehot編碼 ,這樣的話 聚類演算法就都可以兼容了,
KMeans, DBScan, 層次聚類,等等都是可以的

❼ python代碼如何應用系統聚類和K-means聚類法進行聚類分析 然後選擇變數,建立適當的模型

-Means聚類演算法
k-means演算法以k為參數,把n個對象分成k個簇,使簇內具有較高的相似度,而簇間的相似度較低。

隨機選擇k個點作為初始的聚類中心。
對於剩下的點,根據其與聚類中心的距離,將其歸入最近的簇。
對每個簇,計算所有點的均值作為新的聚類中心。
重復2,3直到聚類中心不再發生改變

Figure 1

K-means的應用
數據介紹:
現有1999年全國31個省份城鎮居民家庭平均每人全年消費性支出的八大主要變數數據,這八大變數分別是:食品、衣著、家庭設備用品及服務、醫療保健、交通和通訊、娛樂教育文化服務、居住以及雜項商品和服務。利用已有數據,對31個省份進行聚類。

實驗目的:
通過聚類,了解1999年各個省份的消費水平在國內的情況。

技術路線:
sklearn.cluster.Kmeans

數據實例:

❽ python kmeans聚類怎麼確定k的個數

需要選擇一個k值,也就是我們希望把數據分成多少類,這里k值的選擇對結果的影響很大,Ng的課說的選擇方法有兩種一種是elbow method,簡單的說就是根據聚類的結果和k的函數關系判斷k為多少的時候效果最好。
另一種則是根據具體的需求確定,比如說進行襯衫尺寸的聚類你可能就會考慮分成三類(L,M,S)等!

❾ python怎麼做聚類樹狀圖

#-*-coding:utf-8-*-importmathimportpylabaspl#數據集:每三個是一組分別是西瓜的編號,密度,含糖量data="""
1,0.697,0.46,2,0.774,0.376,3,0.634,0.264,4,0.608,0.318,5,0.556,0.215,
6,0.403,0.237,7,0.481,0.149,8,0.437,0.211,9,0.666,0.091,10,0.243,0.267,
11,0.245,0.057,12,0.343,0.099,13,0.639,0.161,14,0.657,0.198,15,0.36,0.37,
16,0.593,0.042,17,0.719,0.103,18,0.359,0.188,19,0.339,0.241,20,0.282,0.257,
21,0.748,0.232,22,0.714,0.346,23,0.483,0.312,24,0.478,0.437,25,0.525,0.369,
26,0.751,0.489,27,0.532,0.472,28,0.473,0.376,29,0.725,0.445,30,0.446,0.459"""#數據處理dataset是30個樣本(密度,含糖量)的列表a=data.split(',')
dataset=[(float(a[i]),float(a[i+1]))foriinrange(1,len(a)-1,3)]#計算歐幾里得距離,a,b分別為兩個元組defdist(a,b):
returnmath.sqrt(math.pow(a[0]-b[0],2)+math.pow(a[1]-b[1],2))#dist_mindefdist_min(Ci,Cj):
returnmin(dist(i,j)foriinCiforjinCj)#dist_maxdefdist_max(Ci,Cj):
returnmax(dist(i,j)foriinCiforjinCj)#dist_avgdefdist_avg(Ci,Cj):
returnsum(dist(i,j)foriinCiforjinCj)/(len(Ci)*len(Cj))#找到距離最小的下標deffind_Min(M):
min=1000
x=0;y=0
foriinrange(len(M)):forjinrange(len(M[i])):ifi!=jandM[i][j]<min:
min=M[i][j];x=i;y=jreturn(x,y,min)#演算法模型:defAGNES(dataset,dist,k):
#初始化C和M
C=[];M=[]foriindataset:
Ci=[]
Ci.append(i)
C.append(Ci)foriinC:
Mi=[]forjinC:
Mi.append(dist(i,j))
M.append(Mi)
q=len(dataset)#合並更新
whileq>k:
x,y,min=find_Min(M)
C[x].extend(C[y])
C.remove(C[y])
M=[]foriinC:
Mi=[]forjinC:
Mi.append(dist(i,j))
M.append(Mi)
q-=1
returnC#畫圖defdraw(C):
colValue=['r','y','g','b','c','k','m']foriinrange(len(C)):
coo_X=[]#x坐標列表
coo_Y=[]#y坐標列表
forjinrange(len(C[i])):
coo_X.append(C[i][j][0])
coo_Y.append(C[i][j][1])
pl.scatter(coo_X,coo_Y,marker='x',color=colValue[i%len(colValue)],label=i)

pl.legend(loc='upperright')
pl.show()

C=AGNES(dataset,dist_avg,3)
draw(C)

❿ 怎麼用python進行聚類分析

、K均值聚類K-Means演算法思想簡單,效果卻很好,是最有名的聚類演算法。聚類演算法的步驟如下:1:初始化K個樣本作為初始聚類中心;2:計算每個樣本點到K個中心的距離,選擇最近的中心作為其分類,直到所有樣本點分類完畢;3:分別計算K個類中所有樣本的質心,作為新的中心點,完成一輪迭代。通常的迭代結束條件為新的質心與之前的質心偏移值小於一

閱讀全文

與python聚類相關的資料

熱點內容
柱子正負零加密區 瀏覽:318
車輛貸款交完要去4s店解壓 瀏覽:63
電腦可以運行plc編程嗎 瀏覽:590
下載app的怎麼連不上 瀏覽:763
程序員做量化交易有前途么 瀏覽:231
java程序編譯成本地exe 瀏覽:523
安卓手機有噪音怎麼回事 瀏覽:979
ios程序員飽和 瀏覽:4
51單片機控制pwm程序 瀏覽:299
汽車壓縮機串氣可以修么 瀏覽:633
30天學會全部語法pdf 瀏覽:52
java反編譯修補bug 瀏覽:614
如何修改伺服器ftp地址 瀏覽:119
雲伺服器如何用c盤分d盤 瀏覽:597
蘋果的單片機 瀏覽:804
程序員喝麻辣燙 瀏覽:140
安卓怎麼玩微軟的游戲 瀏覽:54
安卓如何在桌面同時操作好幾個app 瀏覽:72
美國app在哪裡看 瀏覽:320
java文件內容追加 瀏覽:622