Ⅰ python避免死鎖方法實例分析
python避免死鎖方法實例分析
本文實例講述了python避免死鎖方法。分享給大家供大家參考。具體分析如下:
當兩個或者更多的線程在等待資源的時候就會產生死鎖,兩個線程相互等待。
在本文實例中 thread1 等待thread2釋放block , thread2等待thtead1釋放ablock,
避免死鎖的原則:
1. 一定要以一個固定的順序來取得鎖,這個列子中,意味著首先要取得alock, 然後再去block
2. 一定要按照與取得鎖相反的順序釋放鎖,這里,應該先釋放block,然後是alock
import threading ,time
a = 5
alock = threading.Lock()
b = 5
block = threading.Lock()
def thread1calc():
print "thread1 acquiring lock a"
alock.acquire()
time.sleep(5)
print "thread1 acquiring lock b"
block.acquire()
a+=5
b+=5
print "thread1 releasing both locks"
block.release()
alock.release()
def thread2calc():
print "thread2 acquiring lock b"
block.acquire()
time.sleep(5)
print "thread2 acquiring lock a"
alock.acquire()
time.sleep(5)
a+=10
b+=10
print "thread2 releasing both locks"
block.release()
alock.release()
t = threading.Thread(target = thread1calc)
t.setDaemon(1)
t.start()
t = threading.Thread(target = thread2calc)
t.setDaemon(2)
t.start()
while 1:
time.sleep(300)
輸出:
thread1 acquiring lock a
thread2 acquiring lock b
thread1 acquiring lock b
thread2 acquiring lock a
希望本文所述對大家的Python程序設計有所幫助。
Ⅱ python多線程的幾種方法
Python進階(二十六)-多線程實現同步的四種方式
臨界資源即那些一次只能被一個線程訪問的資源,典型例子就是列印機,它一次只能被一個程序用來執行列印功能,因為不能多個線程同時操作,而訪問這部分資源的代碼通常稱之為臨界區。
鎖機制
threading的Lock類,用該類的acquire函數進行加鎖,用realease函數進行解鎖
import threadingimport timeclass Num:
def __init__(self):
self.num = 0
self.lock = threading.Lock() def add(self):
self.lock.acquire()#加鎖,鎖住相應的資源
self.num += 1
num = self.num
self.lock.release()#解鎖,離開該資源
return num
n = Num()class jdThread(threading.Thread):
def __init__(self,item):
threading.Thread.__init__(self)
self.item = item def run(self):
time.sleep(2)
value = n.add()#將num加1,並輸出原來的數據和+1之後的數據
print(self.item,value)for item in range(5):
t = jdThread(item)
t.start()
t.join()#使線程一個一個執行
當一個線程調用鎖的acquire()方法獲得鎖時,鎖就進入「locked」狀態。每次只有一個線程可以獲得鎖。如果此時另一個線程試圖獲得這個鎖,該線程就會變為「blocked」狀態,稱為「同步阻塞」(參見多線程的基本概念)。
直到擁有鎖的線程調用鎖的release()方法釋放鎖之後,鎖進入「unlocked」狀態。線程調度程序從處於同步阻塞狀態的線程中選擇一個來獲得鎖,並使得該線程進入運行(running)狀態。
信號量
信號量也提供acquire方法和release方法,每當調用acquire方法的時候,如果內部計數器大於0,則將其減1,如果內部計數器等於0,則會阻塞該線程,知道有線程調用了release方法將內部計數器更新到大於1位置。
import threadingimport timeclass Num:
def __init__(self):
self.num = 0
self.sem = threading.Semaphore(value = 3) #允許最多三個線程同時訪問資源
def add(self):
self.sem.acquire()#內部計數器減1
self.num += 1
num = self.num
self.sem.release()#內部計數器加1
return num
n = Num()class jdThread(threading.Thread):
def __init__(self,item):
threading.Thread.__init__(self)
self.item = item def run(self):
time.sleep(2)
value = n.add()
print(self.item,value)for item in range(100):