導航:首頁 > 編程語言 > pythonzmq模式

pythonzmq模式

發布時間:2024-11-25 23:51:03

python多少支持xp

導讀:本篇文章首席CTO筆記來給大家介紹有關Python多少支持xp的相關內容,希望對大家有所幫助,一起來看看吧。

xp系統怎麼安裝python模塊

可以下載python版本3.4.4

一定要設置環境變數,xp系統,pip最多升級19.1.1

先用win+r輸入cmd進入命令提示符,用cd命令進入安裝的python目錄下,用python-mpipinstallpip==19.1.1(雖然設置了環境變數,但我覺得這是個好習慣),然後用pip3installwheel,下載輪子模塊,會發現下載好了之後在python34scripts下多了一個wheel.py。找好對應的版本,這里要注意機器是什麼系統的,多少位的,以及用的python版本

winXP的系統應該裝哪個python的安裝包?

WinPython新版本不再支持WindowsXP平台,會出現錯誤提示WindowsError127。

按照官網論壇上的解決方案(),把Pyzmq的版本(14.5)替換為舊版本(13.0),測試正常。

具體方法如下:安裝最新版本的WinPython-32bit-2.7.9.4,然後安裝2013年的最晚版本WinPython-32bit-2.7.6.2,提取2.7.6.2版本下的zmq文件夾

直接裝2.x系列和3.x系列的最新版本行了,不需要嚴格對應安裝那兩個版本。

Python3.3.2

32位:?

64位:

Python2.7.5

32位:

64位:

如果你的是64位系統,那麼選擇32位或64位版本都可以,不過64位更佳。如果是32位系統,那隻能用32位版本。

用python編寫的程序怎麼在xp系統下運行嗎?

如果是要打包成exe文件在xp下運行,我的經驗是

python3.4+pyinstaller3.2.1可以在xpsp3上運行

xp系統安裝不上python

原因:

翻出多年前xp系統電腦,想玩玩python,奈何最新版本的python無法在xp系統上安裝。

解決方法:

支持在xp系統上安裝python的最新版本為3.4.x。這里我下載的python版本是3.4.4。然後一定要設置環境變數,這樣用起來更順手一些。

具體操作:

1、升級pip

piplist-o(這里是英文字母o),這個函數可以讓我們知道能夠升級的模塊(叫庫也行,叫包也行,大概就這么個意思)以及能升級的最新版本。因為是xp系統,pip最多升級19.1.1。

先用win+r輸入cmd進入命令提示符,用cd命令進入安裝的python目錄下,用python-mpipinstallpip==19.1.1

然後用pip3installwheel,下載輪子模塊,會發現下載好了之後在python34scripts下多了一個wheel.py。

2、安裝Python

找好對應的版本,這里要注意機器是什麼系統的,多少位的,以及用的python版本

我的是32位,xp系統,python版本3.4.4就要下載pygame-2.2.5-cp34-cp34m-win32.whl。

下載好輪子(我下載到了python34Scripts下)用我們神奇命令pip3installxxx.whl(就是剛才下載的輪子)就可以下載了。

最後為啥這么寫呢?

因為不論你下載matplotlib模塊還是其他的模塊,很多都要用輪子

為什麼我電腦python安裝不了,32和64的都一樣,下載下來,安裝不了急急,有哪位老師能教我一下?

Python最後支持XP的版本是3.4.4,後續版本需要Vista之後的系統才支持。

所以你需要重新下載適合版本的,或者升級系統到win7或win10。

python支持的操作系統有

支持常見的主流平台,如AIX、HPUX、Solaris、Linux、Windows等,除Windows外常見的Unix、Linux平台均帶有原生的Python,但版本一般較低。

同一個版本的中間文件.py和.pyc以及.pyo是跨平台的,其次,PC與移動終端,如:手機、Pad不可跨平台。最後,不能跨處理器構架,如:Intel與ARM,64位與32位。

結語:以上就是首席CTO筆記為大家整理的關於Python多少支持xp的相關內容解答匯總了,希望對您有所幫助!如果解決了您的問題歡迎分享給更多關注此問題的朋友喔~

Ⅱ 大型的PHP應用,通常使用什麼應用做消息隊列

一、消息隊列概述
消息隊列中間件是分布式系統中重要的組件,主要解決應用耦合,非同步消息,流量削鋒等問題。實現高性能,高可用,可伸縮和最終一致性架構。是大型分布式系統不可缺少的中間件。
目前在生產環境,使用較多的消息隊列有ActiveMQ,RabbitMQ,ZeroMQ,Kafka,MetaMQ,RocketMQ等。
二、消息隊列應用場景
以下介紹消息隊列在實際應用中常用的使用場景。非同步處理,應用解耦,流量削鋒和消息通訊四個場景。
2.1非同步處理
場景說明:用戶注冊後,需要發注冊郵件和注冊簡訊。傳統的做法有兩種1.串列的方式;2.並行方式。
(1)串列方式:將注冊信息寫入資料庫成功後,發送注冊郵件,再發送注冊簡訊。以上三個任務全部完成後,返回給客戶端。(架構KKQ:466097527,歡迎加入)
(2)並行方式:將注冊信息寫入資料庫成功後,發送注冊郵件的同時,發送注冊簡訊。以上三個任務完成後,返回給客戶端。與串列的差別是,並行的方式可以提高處理的時間。
假設三個業務節點每個使用50毫秒鍾,不考慮網路等其他開銷,則串列方式的時間是150毫秒,並行的時間可能是100毫秒。
因為CPU在單位時間內處理的請求數是一定的,假設CPU1秒內吞吐量是100次。則串列方式1秒內CPU可處理的請求量是7次(1000/150)。並行方式處理的請求量是10次(1000/100)。
小結:如以上案例描述,傳統的方式系統的性能(並發量,吞吐量,響應時間)會有瓶頸。如何解決這個問題呢?
引入消息隊列,將不是必須的業務邏輯,非同步處理。改造後的架構如下:
按照以上約定,用戶的響應時間相當於是注冊信息寫入資料庫的時間,也就是50毫秒。注冊郵件,發送簡訊寫入消息隊列後,直接返回,因此寫入消息隊列的速度很快,基本可以忽略,因此用戶的響應時間可能是50毫秒。因此架構改變後,系統的吞吐量提高到每秒20 QPS。比串列提高了3倍,比並行提高了兩倍。
2.2應用解耦
場景說明:用戶下單後,訂單系統需要通知庫存系統。傳統的做法是,訂單系統調用庫存系統的介面。如下圖:
傳統模式的缺點:
1) 假如庫存系統無法訪問,則訂單減庫存將失敗,從而導致訂單失敗;
2) 訂單系統與庫存系統耦合;
如何解決以上問題呢?引入應用消息隊列後的方案,如下圖:
訂單系統:用戶下單後,訂單系統完成持久化處理,將消息寫入消息隊列,返回用戶訂單下單成功。
庫存系統:訂閱下單的消息,採用拉/推的方式,獲取下單信息,庫存系統根據下單信息,進行庫存操作。
假如:在下單時庫存系統不能正常使用。也不影響正常下單,因為下單後,訂單系統寫入消息隊列就不再關心其他的後續操作了。實現訂單系統與庫存系統的應用解耦。
2.3流量削鋒
流量削鋒也是消息隊列中的常用場景,一般在秒殺或團搶活動中使用廣泛。
應用場景:秒殺活動,一般會因為流量過大,導致流量暴增,應用掛掉。為解決這個問題,一般需要在應用前端加入消息隊列。
可以控制活動的人數;
可以緩解短時間內高流量壓垮應用;
用戶的請求,伺服器接收後,首先寫入消息隊列。假如消息隊列長度超過最大數量,則直接拋棄用戶請求或跳轉到錯誤頁面;
秒殺業務根據消息隊列中的請求信息,再做後續處理。
2.4日誌處理
日誌處理是指將消息隊列用在日誌處理中,比如Kafka的應用,解決大量日誌傳輸的問題。架構簡化如下:
日誌採集客戶端,負責日誌數據採集,定時寫受寫入Kafka隊列;
Kafka消息隊列,負責日誌數據的接收,存儲和轉發;
日誌處理應用:訂閱並消費kafka隊列中的日誌數據;
以下是新浪kafka日誌處理應用案例:
(1)Kafka:接收用戶日誌的消息隊列。
(2)Logstash:做日誌解析,統一成JSON輸出給Elasticsearch。
(3)Elasticsearch:實時日誌分析服務的核心技術,一個schemaless,實時的數據存儲服務,通過index組織數據,兼具強大的搜索和統計功能。
(4)Kibana:基於Elasticsearch的數據可視化組件,超強的數據可視化能力是眾多公司選擇ELK stack的重要原因。
2.5消息通訊
消息通訊是指,消息隊列一般都內置了高效的通信機制,因此也可以用在純的消息通訊。比如實現點對點消息隊列,或者聊天室等。
點對點通訊:
客戶端A和客戶端B使用同一隊列,進行消息通訊。
聊天室通訊:
客戶端A,客戶端B,客戶端N訂閱同一主題,進行消息發布和接收。實現類似聊天室效果。
以上實際是消息隊列的兩種消息模式,點對點或發布訂閱模式。模型為示意圖,供參考。
三、消息中間件示例
3.1電商系統
消息隊列採用高可用,可持久化的消息中間件。比如Active MQ,Rabbit MQ,Rocket Mq。(1)應用將主幹邏輯處理完成後,寫入消息隊列。消息發送是否成功可以開啟消息的確認模式。(消息隊列返回消息接收成功狀態後,應用再返回,這樣保障消息的完整性)
(2)擴展流程(發簡訊,配送處理)訂閱隊列消息。採用推或拉的方式獲取消息並處理。
(3)消息將應用解耦的同時,帶來了數據一致性問題,可以採用最終一致性方式解決。比如主數據寫入資料庫,擴展應用根據消息隊列,並結合資料庫方式實現基於消息隊列的後續處理。
3.2日誌收集系統
分為Zookeeper注冊中心,日誌收集客戶端,Kafka集群和Storm集群(OtherApp)四部分組成。
Zookeeper注冊中心,提出負載均衡和地址查找服務;
日誌收集客戶端,用於採集應用系統的日誌,並將數據推送到kafka隊列;
四、JMS消息服務
講消息隊列就不得不提JMS 。JMS(java Message Service,Java消息服務)API是一個消息服務的標准/規范,允許應用程序組件基於JavaEE平台創建、發送、接收和讀取消息。它使分布式通信耦合度更低,消息服務更加可靠以及非同步性。
在EJB架構中,有消息bean可以無縫的與JM消息服務集成。在J2EE架構模式中,有消息服務者模式,用於實現消息與應用直接的解耦。
4.1消息模型
在JMS標准中,有兩種消息模型P2P(Point to Point),Publish/Subscribe(Pub/Sub)。
4.1.1 P2P模式
P2P模式包含三個角色:消息隊列(Queue),發送者(Sender),接收者(Receiver)。每個消息都被發送到一個特定的隊列,接收者從隊列中獲取消息。隊列保留著消息,直到他們被消費或超時。
P2P的特點
每個消息只有一個消費者(Consumer)(即一旦被消費,消息就不再在消息隊列中)
發送者和接收者之間在時間上沒有依賴性,也就是說當發送者發送了消息之後,不管接收者有沒有正在運行,它不會影響到消息被發送到隊列
接收者在成功接收消息之後需向隊列應答成功
如果希望發送的每個消息都會被成功處理的話,那麼需要P2P模式。(架構KKQ:466097527,歡迎加入)
4.1.2 Pub/sub模式
包含三個角色主題(Topic),發布者(Publisher),訂閱者(Subscriber) 。多個發布者將消息發送到Topic,系統將這些消息傳遞給多個訂閱者。
Pub/Sub的特點
每個消息可以有多個消費者
發布者和訂閱者之間有時間上的依賴性。針對某個主題(Topic)的訂閱者,它必須創建一個訂閱者之後,才能消費發布者的消息。
為了消費消息,訂閱者必須保持運行的狀態。
為了緩和這樣嚴格的時間相關性,JMS允許訂閱者創建一個可持久化的訂閱。這樣,即使訂閱者沒有被激活(運行),它也能接收到發布者的消息。
如果希望發送的消息可以不被做任何處理、或者只被一個消息者處理、或者可以被多個消費者處理的話,那麼可以採用Pub/Sub模型。
4.2消息消費
在JMS中,消息的產生和消費都是非同步的。對於消費來說,JMS的消息者可以通過兩種方式來消費消息。
(1)同步
訂閱者或接收者通過receive方法來接收消息,receive方法在接收到消息之前(或超時之前)將一直阻塞;
(2)非同步
訂閱者或接收者可以注冊為一個消息監聽器。當消息到達之後,系統自動調用監聽器的onMessage方法。
JNDI:Java命名和目錄介面,是一種標準的Java命名系統介面。可以在網路上查找和訪問服務。通過指定一個資源名稱,該名稱對應於資料庫或命名服務中的一個記錄,同時返回資源連接建立所必須的信息。
JNDI在JMS中起到查找和訪問發送目標或消息來源的作用。(架構KKQ:466097527,歡迎加入)
4.3JMS編程模型
(1) ConnectionFactory
創建Connection對象的工廠,針對兩種不同的jms消息模型,分別有QueueConnectionFactory和TopicConnectionFactory兩種。可以通過JNDI來查找ConnectionFactory對象。
(2) Destination
Destination的意思是消息生產者的消息發送目標或者說消息消費者的消息來源。對於消息生產者來說,它的Destination是某個隊列(Queue)或某個主題(Topic);對於消息消費者來說,它的Destination也是某個隊列或主題(即消息來源)。
所以,Destination實際上就是兩種類型的對象:Queue、Topic可以通過JNDI來查找Destination。
(3) Connection
Connection表示在客戶端和JMS系統之間建立的鏈接(對TCP/IP socket的包裝)。Connection可以產生一個或多個Session。跟ConnectionFactory一樣,Connection也有兩種類型:QueueConnection和TopicConnection。
(4) Session
Session是操作消息的介面。可以通過session創建生產者、消費者、消息等。Session提供了事務的功能。當需要使用session發送/接收多個消息時,可以將這些發送/接收動作放到一個事務中。同樣,也分QueueSession和TopicSession。
(5) 消息的生產者
消息生產者由Session創建,並用於將消息發送到Destination。同樣,消息生產者分兩種類型:QueueSender和TopicPublisher。可以調用消息生產者的方法(send或publish方法)發送消息。
(6) 消息消費者
消息消費者由Session創建,用於接收被發送到Destination的消息。兩種類型:QueueReceiver和TopicSubscriber。可分別通過session的createReceiver(Queue)或createSubscriber(Topic)來創建。當然,也可以session的creatDurableSubscriber方法來創建持久化的訂閱者。
(7) MessageListener
消息監聽器。如果注冊了消息監聽器,一旦消息到達,將自動調用監聽器的onMessage方法。EJB中的MDB(Message-Driven Bean)就是一種MessageListener。
深入學習JMS對掌握JAVA架構,EJB架構有很好的幫助,消息中間件也是大型分布式系統必須的組件。本次分享主要做全局性介紹,具體的深入需要大家學習,實踐,總結,領會。
五、常用消息隊列
一般商用的容器,比如WebLogic,JBoss,都支持JMS標准,開發上很方便。但免費的比如Tomcat,Jetty等則需要使用第三方的消息中間件。本部分內容介紹常用的消息中間件(Active MQ,Rabbit MQ,Zero MQ,Kafka)以及他們的特點。
5.1 ActiveMQ
ActiveMQ 是Apache出品,最流行的,能力強勁的開源消息匯流排。ActiveMQ 是一個完全支持JMS1.1和J2EE 1.4規范的 JMS Provider實現,盡管JMS規范出台已經是很久的事情了,但是JMS在當今的J2EE應用中間仍然扮演著特殊的地位。
ActiveMQ特性如下:
⒈ 多種語言和協議編寫客戶端。語言: Java,C,C++,C#,Ruby,Perl,Python,PHP。應用協議: OpenWire,Stomp REST,WS Notification,XMPP,AMQP
⒉ 完全支持JMS1.1和J2EE 1.4規范 (持久化,XA消息,事務)
⒊ 對spring的支持,ActiveMQ可以很容易內嵌到使用Spring的系統裡面去,而且也支持Spring2.0的特性
⒋ 通過了常見J2EE伺服器(如 Geronimo,JBoss 4,GlassFish,WebLogic)的測試,其中通過JCA 1.5 resource adaptors的配置,可以讓ActiveMQ可以自動的部署到任何兼容J2EE 1.4 商業伺服器上
⒌ 支持多種傳送協議:in-VM,TCP,SSL,NIO,UDP,JGroups,JXTA
⒍ 支持通過JDBC和journal提供高速的消息持久化
⒎ 從設計上保證了高性能的集群,客戶端-伺服器,點對點
⒏ 支持Ajax
⒐ 支持與Axis的整合
⒑ 可以很容易得調用內嵌JMS provider,進行測試
5.2 RabbitMQ
RabbitMQ是流行的開源消息隊列系統,用erlang語言開發。RabbitMQ是AMQP(高級消息隊列協議)的標准實現。支持多種客戶端,如:Python、Ruby、.NET、Java、JMS、C、PHP、ActionScript、XMPP、STOMP等,支持AJAX,持久化。用於在分布式系統中存儲轉發消息,在易用性、擴展性、高可用性等方面表現不俗。
幾個重要概念:
Broker:簡單來說就是消息隊列伺服器實體。
Exchange:消息交換機,它指定消息按什麼規則,路由到哪個隊列。
Queue:消息隊列載體,每個消息都會被投入到一個或多個隊列。
Binding:綁定,它的作用就是把exchange和queue按照路由規則綁定起來。
Routing Key:路由關鍵字,exchange根據這個關鍵字進行消息投遞。
vhost:虛擬主機,一個broker里可以開設多個vhost,用作不同用戶的許可權分離。
procer:消息生產者,就是投遞消息的程序。
consumer:消息消費者,就是接受消息的程序。
channel:消息通道,在客戶端的每個連接里,可建立多個channel,每個channel代表一個會話任務。
消息隊列的使用過程,如下:
(1)客戶端連接到消息隊列伺服器,打開一個channel。
(2)客戶端聲明一個exchange,並設置相關屬性。
(3)客戶端聲明一個queue,並設置相關屬性。
(4)客戶端使用routing key,在exchange和queue之間建立好綁定關系。
(5)客戶端投遞消息到exchange。
exchange接收到消息後,就根據消息的key和已經設置的binding,進行消息路由,將消息投遞到一個或多個隊列里。
5.3 ZeroMQ
號稱史上最快的消息隊列,它實際類似於Socket的一系列介面,他跟Socket的區別是:普通的socket是端到端的(1:1的關系),而ZMQ卻是可以N:M 的關系,人們對BSD套接字的了解較多的是點對點的連接,點對點連接需要顯式地建立連接、銷毀連接、選擇協議(TCP/UDP)和處理錯誤等,而ZMQ屏蔽了這些細節,讓你的網路編程更為簡單。ZMQ用於node與node間的通信,node可以是主機或者是進程。
引用官方的說法: 「ZMQ(以下ZeroMQ簡稱ZMQ)是一個簡單好用的傳輸層,像框架一樣的一個socket library,他使得Socket編程更加簡單、簡潔和性能更高。是一個消息處理隊列庫,可在多個線程、內核和主機盒之間彈性伸縮。ZMQ的明確目標是「成為標准網路協議棧的一部分,之後進入Linux內核」。現在還未看到它們的成功。但是,它無疑是極具前景的、並且是人們更加需要的「傳統」BSD套接字之上的一 層封裝。ZMQ讓編寫高性能網路應用程序極為簡單和有趣。」
特點是:
高性能,非持久化;
跨平台:支持Linux、Windows、OS X等。
多語言支持; C、C++、Java、.NET、Python等30多種開發語言。
可單獨部署或集成到應用中使用;
可作為Socket通信庫使用。
與RabbitMQ相比,ZMQ並不像是一個傳統意義上的消息隊列伺服器,事實上,它也根本不是一個伺服器,更像一個底層的網路通訊庫,在Socket API之上做了一層封裝,將網路通訊、進程通訊和線程通訊抽象為統一的API介面。支持「Request-Reply 「,」Publisher-Subscriber「,」Parallel Pipeline」三種基本模型和擴展模型。
ZeroMQ高性能設計要點:
1、無鎖的隊列模型
對於跨線程間的交互(用戶端和session)之間的數據交換通道pipe,採用無鎖的隊列演算法CAS;在pipe兩端注冊有非同步事件,在讀或者寫消息到pipe的時,會自動觸發讀寫事件。
2、批量處理的演算法
對於傳統的消息處理,每個消息在發送和接收的時候,都需要系統的調用,這樣對於大量的消息,系統的開銷比較大,zeroMQ對於批量的消息,進行了適應性的優化,可以批量的接收和發送消息。
3、多核下的線程綁定,無須CPU切換
區別於傳統的多線程並發模式,信號量或者臨界區, zeroMQ充分利用多核的優勢,每個核綁定運行一個工作者線程,避免多線程之間的CPU切換開銷。
5.4 Kafka
Kafka是一種高吞吐量的分布式發布訂閱消息系統,它可以處理消費者規模的網站中的所有動作流數據。 這種動作(網頁瀏覽,搜索和其他用戶的行動)是在現代網路上的許多社會功能的一個關鍵因素。 這些數據通常是由於吞吐量的要求而通過處理日誌和日誌聚合來解決。 對於像Hadoop的一樣的日誌數據和離線分析系統,但又要求實時處理的限制,這是一個可行的解決方案。Kafka的目的是通過Hadoop的並行載入機制來統一線上和離線的消息處理,也是為了通過集群機來提供實時的消費。
Kafka是一種高吞吐量的分布式發布訂閱消息系統,有如下特性:
通過O(1)的磁碟數據結構提供消息的持久化,這種結構對於即使數以TB的消息存儲也能夠保持長時間的穩定性能。(文件追加的方式寫入數據,過期的數據定期刪除)
高吞吐量:即使是非常普通的硬體Kafka也可以支持每秒數百萬的消息。
支持通過Kafka伺服器和消費機集群來分區消息。
支持Hadoop並行數據載入。
Kafka相關概念
Broker
Kafka集群包含一個或多個伺服器,這種伺服器被稱為broker[5]
Topic
每條發布到Kafka集群的消息都有一個類別,這個類別被稱為Topic。(物理上不同Topic的消息分開存儲,邏輯上一個Topic的消息雖然保存於一個或多個broker上但用戶只需指定消息的Topic即可生產或消費數據而不必關心數據存於何處)
Partition
Parition是物理上的概念,每個Topic包含一個或多個Partition.
Procer
負責發布消息到Kafka broker
Consumer
消息消費者,向Kafka broker讀取消息的客戶端。
Consumer Group
每個Consumer屬於一個特定的Consumer Group(可為每個Consumer指定group name,若不指定group name則屬於默認的group)。
一般應用在大數據日誌處理或對實時性(少量延遲),可靠性(少量丟數據)要求稍低的場景使用。

Ⅲ 如何通過IP訪問並運行伺服器上的python文件

很多種方法,例如:

  1. rpc遠程調用.通過ip地址,遠程指定python文件,直接調用

  2. 寫一個簡單的socket,進行通信,發送命令,根據命令啟動python文件

  3. 通過http協議,建立簡單的web服務,通過http請求調用

  4. 通過消息隊列,例如zmq,rabbitmq,amq,發送消息或者命令,由消費者調用python文件.


Ⅳ 消息中間件(一)MQ詳解及四大MQ比較

一、消息中間件相關知識

1、概述

消息隊列已經逐漸成為企業IT系統內部通信的核心手段。它具有低耦合、可靠投遞、廣播、流量控制、最終一致性等一系列功能,成為非同步RPC的主要手段之一。當今市面上有很多主流的消息中間件,如老牌的ActiveMQ、RabbitMQ,炙手可熱的Kafka,阿里巴巴自主開發RocketMQ等。

2、消息中間件的組成

2.1 Broker

消息伺服器,作為server提供消息核心服務

2.2 Procer

消息生產者,業務的發起方,負責生產消息傳輸給broker,

2.3 Consumer

消息消費者,業務的處理方,負責從broker獲取消息並進行業務邏輯處理

2.4 Topic

2.5 Queue

2.6 Message

消息體,根據不同通信協議定義的固定格式進行編碼的數據包,來封裝業務數據,實現消息的傳輸

3 消息中間件模式分類

3.1 點對點

PTP點對點:使用queue作為通信載體

說明:

消息生產者生產消息發送到queue中,然後消息消費者從queue中取出並且消費消息。

消息被消費以後,queue中不再存儲,所以消息消費者不可能消費到已經被消費的消息。 Queue支持存在多個消費者,但是對一個消息而言,只會有一個消費者可以消費。

說明:

queue實現了負載均衡,將procer生產的消息發送到消息隊列中,由多個消費者消費。但一個消息只能被一個消費者接受,當沒有消費者可用時,這個消息會被保存直到有一個可用的消費者。

4 消息中間件的優勢

4.1 系統解耦

交互系統之間沒有直接的調用關系,只是通過消息傳輸,故系統侵入性不強,耦合度低。

4.2 提高系統響應時間

例如原來的一套邏輯,完成支付可能涉及先修改訂單狀態、計算會員積分、通知物流配送幾個邏輯才能完成;通過MQ架構設計,就可將緊急重要(需要立刻響應)的業務放到該調用方法中,響應要求不高的使用消息隊列,放到MQ隊列中,供消費者處理。

4.3 為大數據處理架構提供服務

通過消息作為整合,大數據的背景下,消息隊列還與實時處理架構整合,為數據處理提供性能支持。

4.4 Java消息服務——JMS

Java消息服務(Java Message Service,JMS)應用程序介面是一個Java平台中關於面向消息中間件(MOM)的API,用於在兩個應用程序之間,或分布式系統中發送消息,進行非同步通信。

5 消息中間件應用場景

5.1 非同步通信

有些業務不想也不需要立即處理消息。消息隊列提供了非同步處理機制,允許用戶把一個消息放入隊列,但並不立即處理它。想向隊列中放入多少消息就放多少,然後在需要的時候再去處理它們。

5.2 解耦

降低工程間的強依賴程度,針對異構系統進行適配。在項目啟動之初來預測將來項目會碰到什麼需求,是極其困難的。通過消息系統在處理過程中間插入了一個隱含的、基於數據的介面層,兩邊的處理過程都要實現這一介面,當應用發生變化時,可以獨立的擴展或修改兩邊的處理過程,只要確保它們遵守同樣的介面約束。

5.3 冗餘

有些情況下,處理數據的過程會失敗。除非數據被持久化,否則將造成丟失。消息隊列把數據進行持久化直到它們已經被完全處理,通過這一方式規避了數據丟失風險。許多消息隊列所採用的」插入-獲取-刪除」範式中,在把一個消息從隊列中刪除之前,需要你的處理系統明確的指出該消息已經被處理完畢,從而確保你的數據被安全的保存直到你使用完畢。

5.4 擴展性

因為消息隊列解耦了你的處理過程,所以增大消息入隊和處理的頻率是很容易的,只要另外增加處理過程即可。不需要改變代碼、不需要調節參數。便於分布式擴容。

5.5 過載保護

在訪問量劇增的情況下,應用仍然需要繼續發揮作用,但是這樣的突發流量無法提取預知;如果以為了能處理這類瞬間峰值訪問為標准來投入資源隨時待命無疑是巨大的浪費。使用消息隊列能夠使關鍵組件頂住突發的訪問壓力,而不會因為突發的超負荷的請求而完全崩潰。

5.6 可恢復性

系統的一部分組件失效時,不會影響到整個系統。消息隊列降低了進程間的耦合度,所以即使一個處理消息的進程掛掉,加入隊列中的消息仍然可以在系統恢復後被處理。

5.7 順序保證

在大多使用場景下,數據處理的順序都很重要。大部分消息隊列本來就是排序的,並且能保證數據會按照特定的順序來處理。

5.8 緩沖

在任何重要的系統中,都會有需要不同的處理時間的元素。消息隊列通過一個緩沖層來幫助任務最高效率的執行,該緩沖有助於控制和優化數據流經過系統的速度。以調節系統響應時間。

5.9 數據流處理

分布式系統產生的海量數據流,如:業務日誌、監控數據、用戶行為等,針對這些數據流進行實時或批量採集匯總,然後進行大數據分析是當前互聯網的必備技術,通過消息隊列完成此類數據收集是最好的選擇。

6 消息中間件常用協議

6.1 AMQP協議

AMQP即Advanced Message Queuing Protocol,一個提供統一消息服務的應用層標准高級消息隊列協議,是應用層協議的一個開放標准,為面向消息的中間件設計。基於此協議的客戶端與消息中間件可傳遞消息,並不受客戶端/中間件不同產品,不同開發語言等條件的限制。

優點:可靠、通用

6.2 MQTT協議

MQTT(Message Queuing Telemetry Transport,消息隊列遙測傳輸)是IBM開發的一個即時通訊協議,有可能成為物聯網的重要組成部分。該協議支持所有平台,幾乎可以把所有聯網物品和外部連接起來,被用來當做感測器和致動器(比如通過Twitter讓房屋聯網)的通信協議。

優點:格式簡潔、佔用帶寬小、移動端通信、PUSH、嵌入式系統

6.3 STOMP協議

STOMP(Streaming Text Orientated Message Protocol)是流文本定向消息協議,是一種為MOM(Message Oriented Middleware,面向消息的中間件)設計的簡單文本協議。STOMP提供一個可互操作的連接格式,允許客戶端與任意STOMP消息代理(Broker)進行交互。

優點:命令模式(非topicqueue模式)

6.4 XMPP協議

XMPP(可擴展消息處理現場協議,Extensible Messaging and Presence Protocol)是基於可擴展標記語言(XML)的協議,多用於即時消息(IM)以及在線現場探測。適用於伺服器之間的准即時操作。核心是基於XML流傳輸,這個協議可能最終允許網際網路用戶向網際網路上的其他任何人發送即時消息,即使其操作系統和瀏覽器不同。

優點:通用公開、兼容性強、可擴展、安全性高,但XML編碼格式佔用帶寬大

6.5 其他基於TCP/IP自定義的協議

有些特殊框架(如:redis、kafka、zeroMq等)根據自身需要未嚴格遵循MQ規范,而是基於TCPIP自行封裝了一套協議,通過網路socket介面進行傳輸,實現了MQ的功能。

7 常見消息中間件MQ介紹

7.1 RocketMQ

阿里系下開源的一款分布式、隊列模型的消息中間件,原名Metaq,3.0版本名稱改為RocketMQ,是阿里參照kafka設計思想使用java實現的一套mq。同時將阿里系內部多款mq產品(Notify、metaq)進行整合,只維護核心功能,去除了所有其他運行時依賴,保證核心功能最簡化,在此基礎上配合阿里上述其他開源產品實現不同場景下mq的架構,目前主要多用於訂單交易系統。

具有以下特點:

官方提供了一些不同於kafka的對比差異:

https://rocketmq.apache.org/docs/motivation/

7.2 RabbitMQ

使用Erlang編寫的一個開源的消息隊列,本身支持很多的協議:AMQP,XMPP, SMTP,STOMP,也正是如此,使的它變的非常重量級,更適合於企業級的開發。同時實現了Broker架構,核心思想是生產者不會將消息直接發送給隊列,消息在發送給客戶端時先在中心隊列排隊。對路由(Routing),負載均衡(Load balance)、數據持久化都有很好的支持。多用於進行企業級的ESB整合。

7.3 ActiveMQ

Apache下的一個子項目。使用Java完全支持JMS1.1和J2EE 1.4規范的 JMS Provider實現,少量代碼就可以高效地實現高級應用場景。可插拔的傳輸協議支持,比如:in-VM, TCP, SSL, NIO, UDP, multicast, JGroups and JXTA transports。RabbitMQ、ZeroMQ、ActiveMQ均支持常用的多種語言客戶端 C++、Java、.Net,、Python、 Php、 Ruby等。

7.4 Redis

使用C語言開發的一個Key-Value的NoSQL資料庫,開發維護很活躍,雖然它是一個Key-Value資料庫存儲系統,但它本身支持MQ功能,所以完全可以當做一個輕量級的隊列服務來使用。對於RabbitMQ和Redis的入隊和出隊操作,各執行100萬次,每10萬次記錄一次執行時間。測試數據分為128Bytes、512Bytes、1K和10K四個不同大小的數據。實驗表明:入隊時,當數據比較小時Redis的性能要高於RabbitMQ,而如果數據大小超過了10K,Redis則慢的無法忍受;出隊時,無論數據大小,Redis都表現出非常好的性能,而RabbitMQ的出隊性能則遠低於Redis。

7.5 Kafka

Apache下的一個子項目,使用scala實現的一個高性能分布式Publish/Subscribe消息隊列系統,具有以下特性:

7.6 ZeroMQ

號稱最快的消息隊列系統,專門為高吞吐量/低延遲的場景開發,在金融界的應用中經常使用,偏重於實時數據通信場景。ZMQ能夠實現RabbitMQ不擅長的高級/復雜的隊列,但是開發人員需要自己組合多種技術框架,開發成本高。因此ZeroMQ具有一個獨特的非中間件的模式,更像一個socket library,你不需要安裝和運行一個消息伺服器或中間件,因為你的應用程序本身就是使用ZeroMQ API完成邏輯服務的角色。但是ZeroMQ僅提供非持久性的隊列,如果down機,數據將會丟失。如:Twitter的Storm中使用ZeroMQ作為數據流的傳輸。

ZeroMQ套接字是與傳輸層無關的:ZeroMQ套接字對所有傳輸層協議定義了統一的API介面。默認支持 進程內(inproc) ,進程間(IPC) ,多播,TCP協議,在不同的協議之間切換只要簡單的改變連接字元串的前綴。可以在任何時候以最小的代價從進程間的本地通信切換到分布式下的TCP通信。ZeroMQ在背後處理連接建立,斷開和重連邏輯。

特性:

二、主要消息中間件的比較

閱讀全文

與pythonzmq模式相關的資料

熱點內容
反編譯VMP 瀏覽:46
hello編譯器 瀏覽:771
apk程序加密 瀏覽:595
如何給app重命名 瀏覽:603
怎麼幽默調侃程序員 瀏覽:285
忘記密碼解壓視頻 瀏覽:911
運城機場春運加密 瀏覽:287
安卓手機如何關閉app後台 瀏覽:154
安卓數字密碼忘記怎麼破解 瀏覽:252
pythonzmq模式 瀏覽:181
linux運行php網站 瀏覽:865
實驗室無油壓縮機 瀏覽:805
哪裡可以免費看動畫app 瀏覽:53
文本加密咋解 瀏覽:485
tomcat做伺服器怎麼設置 瀏覽:252
非對稱加密會增大網路包嗎 瀏覽:703
為什麼不能編譯c 瀏覽:262
數據伺服器不能啟動是什麼意思 瀏覽:556
java以什麼開頭 瀏覽:821
蘋果手機相冊文件夾如何清理 瀏覽:405