❶ 設計一個畫出機器人走正方形的流程圖
這個問題很抽象。到底是人為指定正方形邊長讓機器人自己走還是機器人去檢測你劃好的正方形的邊走。
開始 請指定路長--指定繼續執行-否則結束
進入循環,i=0 i=i+1
開始走--
if i<4, 繼續走
if i>=4,結束。
ps:那個有可能涉及到你的語言和控制類的編程了吧。和流程沒關系
流程里可以用簡單的trun left表示。
❷ 創客是如何製作小機器人
arino是創客界最知名的平台,因為其擁有低門檻與拓展性和開源的特性讓他成為世界上最火熱的創客編程平台。雖然現在也有不少優秀的開源平台在功能上做的比arino更好更優秀,但arino擁有的強大社區支持在目前看來,還是創客的入門首選。
而今天我們就arino的智能機械方向,來教教各位剛入門的創客們如何自主造出一台簡易的智能機器人。相信你認真看完後,會發現造一台機器人,其實也不是那麼難。#改變生活黑科技#
計劃方案與想法
在製作機器人的過程中我們要善於發現問題,並找到改進的辦法,將其整理歸納為創意和點子,從而不斷創造出新的需求。不過首先我們還是得把腦海里的想法轉化成三維模型。這里推薦三款免費的 3D 建模軟體:SketchUp、Autodesk 123D 和 TinkerCAD 。
首先, 機器人的外形是要自己設計的,包括內部具體的結構。在哪裡放舵機、哪裡放PCB、哪裡放感測器等,這需要有一定的機械類專業和的背景。最少也得會一個Pro-E、Solidworks之類的基本3D設計軟體。 然後到運動控制。
有了 Arino 帶來的豐富軟體和硬體資源,或許還不夠。許多時候,你可以在網路上買到便宜的零件,但也有一些時候,你需要一些特殊造型的零件。沒關系,我們還有淘寶和桌面 CNC,在家中購買自己的零件現在已不是什麼難事了。
這時候,我們首先需要一組Arino創客入門基礎套件,注意這些事用來設計方案的,而不是進行具體的實際編程操作,等我們有一套圖紙後我們還需要一些模型拆解取得整體架構。
在獲得了基本零件和一些大致的想法後,我們就可以選用平台和方式,交給我們的設計者來進行工作。當然,開發不是一帆風順的,如果一個材料或想法得不到解決,需要換個思路。那創意者和設計者就必須時刻緊密的聯系在一起,共同探討出方案與結果來。
進行編程與開發
設計者是創客中的魔法師,他們可以將一切創意和點子轉化為詳細可執行的圖紙或計劃。設計者一般要求能力。
就目前為止,機器人大體可以分為人形與非人形機器人。非人形機器人可以是小車,動物,甚至是迷之長頸鹿等各種各樣的結構,而這些結構想對仿生學層次較高,實施起來比較容易。
如果為了提高機器人的性能,並且感知外界的環境、提取深度信息,還要給機器人裝感測器 。而感知的核心功能還要搭構同步定位和地圖構建。
而如果選擇人形機器人,用Arino的人會比較多。但一般需要二次開發。Arino的編程還算比較簡單,基於C語言,常用的器件都有庫,函數都不用自己寫,調用就可以了。能搞定前面兩塊,這一部分只是實現的過程,難度不太大。
編程過程來講,手機端的程序會比較容易,有現成的可以用,可以利用藍牙串口通信。而且如果能做APP開發的話,可以自己開發一個。定義幾個button,按下不同的button,給機器人的藍牙模塊發送不同的字元。機器人的Arino板中運行的程序收到字元後,做出相應的動作,動作的編程已經算完成了。
開始製作與裝配
製作機器人的過程中,如果沒有強有力的行動,一切只是虛幻泡影,實踐出真知,在製作與裝配的過程中你可能會遇到結構部錯誤,零件大小口徑錯誤......等等。嘿,耐點心呢,你是創客!
其實機器人與人類之間的關系是極為微妙、難以平衡的。做得太像人類,會引起人本能的生理排斥;做得太像機器,又讓人覺得和它說話顯得自己像個傻瓜;做得太可愛,又會讓人覺得它是個低智的玩具。
但如果一個簡單的DIY機器人部位結構,只有擁有3d列印機,那麼一切都可以迎刃而解。一般的塑料,金屬材料都可以在幾分鍾利用allcct製作出來。
大家都知道許多學生和公司通過NAO來做研究,用它來編程,調用聲音合成、圖像識別、肢體動作的能力,進而使之勝任不同的場景,例如踢足球賽、跳舞。但NAO這種桌面型的機器人運動能力是有限的,而且材料做出的材料很貴,但如果有一台3D列印機,一切東西都可以速出。
最後呢,如果你要製造一個可以照顧寵物、與你一起外出的新型機器人,同樣的你可以使用gforce的軟體開發包和遙控器,編寫一段JAVA程序就能做到!但是創意是最重要的,因為對於創客而言,工具和技能僅僅是實現創意的手段,對作品起到決定性作用的還是創意;同時,最後一種武器也是最容易掌握的,因為每個人都擁有著與生俱來的創造天賦。
如果遇到困難就放棄變成了你的習慣,你的人生就基本失去了提升的可能了。因為每個成長都是伴隨著困難和痛苦的,所以做一台小型機器人。其實,也不會有那麼難!
❸ 如何設計一款基於ROS的移動機器人
最近幾年各種移動機器人開始涌現出來,不論是輪式的還是履帶式的,如何讓移動機器人移動都是最核心的工作。要讓機器人實現環境感知、機械臂控制、導航規劃等一系列功能,就需要操作系統的支持,而ROS就是最重要的軟體平台之一,它在科研領域已經有廣泛的應用。
不過有關ROS的書籍並不多,國內可供的學習社區就更少了。本期硬創公開課就帶大家了解一下如何利用ROS來設計移動機器人。
分享嘉賓李金榜:EAI科技創始人兼CEO,畢業於北京理工大學,碩士學位。 曾在網易、雪球、騰訊技術部有多年linux底層技術研發經驗。2015年聯合創立EAI科技,負責SLAM演算法研發及相關定位導航軟體產品開發。EAI科技,專注機器人移動,提供消費級高性能激光雷達、slam演算法和機器人移動平台。
移動機器人的三個部分
所謂的智能移動, 是指機器人能根據周圍的環境變化,自主地規劃路線、避障,到達目標地。
機器人是模擬人的各種行為,想像一下,人走動需要哪些器官的配合? 首先用眼睛觀察周圍環境,然後用腦去分析如何走才能到達目標地,接著用腿走過去, 周而復始,直到到達目標地址為至。機器人如果要實現智能移動,也需要眼、腦和腿這三部分的緊密配合。
腿
「腿」是機器人移動的基礎。機器人的「腿」不局限於類人或類動物的腿,也可以是輪子、履帶等,能讓機器人移動起來的部件,都可以籠統地稱為「腿」。
類人的腿式優點是:既可以在復雜路況(比如爬樓梯)下移動、也可以更形象地模仿人的動作(比如跳舞),缺點是:結構和控制單元比較復雜、造價高、移動慢等。
所以大部分移動的機器人都是輪式機器人,其優勢在於輪子設計簡單、成本低、移動快。而輪式的也分為多種: 兩輪平衡車、三輪、四輪和多輪等等。目前最經濟實用的是兩個主動輪+一個萬向輪。
眼睛
機器人的眼睛其實就是一個感測器。它的作用是觀察周圍的環境,適合做機器人眼睛的有激光雷達、視覺(深度相機、單雙相機)、輔助(超聲波測距、紅外測距)等。
「腦」
機器人的大腦就負責接收「眼睛」傳輸的數據,實時計算出路線,指揮腿去移動。
其實就是要把看到的東西轉換為數據語言。針對如何描述數據,如何實現處理邏輯等一系列問題。 ROS系統給我們提供一個很好的開發框架。
ROS簡介
ROS是建立在linux之上的操作系統。它的前身是斯坦福人工智慧實驗室為了支持斯坦福智能機器人而建立項目,主要可以提供一些標准操作系統服務,例如硬體抽象,底層設備控制,常用功能實現,進程間消息以及數據包管理。
ROS是基於一種圖狀架構,從而不同節點的進程能接受、發布、聚合各種信息(例如感測,控制,狀態,規劃等等)。目前ROS主要支持Ubuntu操作系統。
有人問ROS能否裝到虛擬機里,一般來說是可以的,但是我們建議裝個雙系統,用Ubuntu專門跑ROS。
實際上,ROS可以分成兩層,低層是上面描述的操作系統層,高層則是廣大用戶群貢獻的實現不同功能的各種軟體包,例如定位繪圖,行動規劃,感知,模擬等等。ROS(低層)使用BSD許可證,所有是開源軟體,並能免費用於研究和商業用途,而高層的用戶提供的包則使用很多種不同的許可證。
用ROS實現機器人的移動
對於二維空間,使用線速度 + 角速度可以實現輪式機器的隨意移動。
線速度:描述機器人前後移動的速度大小
角速度:描述機器人轉動的角速度大小
所以控制機器人移動主要是要把線速度角速度轉換為左右輪的速度大小,然後,通過輪子直徑和輪間距,可以把線速度和角速度轉化為左輪和右輪的速度大小。
這里有一個關鍵問題就是編碼器的選擇和pid的調速。
編碼器的選擇:一般編碼器和輪子是在一個軸上,目前來說,速度在0.7m/s以下的話,編碼器選600鍵到1200鍵之間都ok。不過需要注意的是,編碼器最好用雙線的,A、B兩線輸出,A向和B向輸出相差90度,這樣可以防抖動。防抖動就是可以在之後里程計算時可以更准確。
左輪和右輪的速度大小的控制,通過輪子編碼器反饋,通過PID實時調整電機的PMW來實現。實時計算出小車的里程計(odom),得到小車移動位置的變化。
計算車的位置變化是通過編碼器來計算的,如果輪子打滑等情況,那麼計算的變化和實際的變化可能不同。要解決這個問題,其實是看那個問題更嚴重。要走5米只走了4.9米重要,還是要走180度只走了179度重要。
其實角度的不精確對小車的影響更大。一般來說,小車的直線距離精確度可以控制在厘米范圍內,在角度方面可以控制精準度在1%~2%。因為角度是比較重要的參數,所以很多人就用陀螺儀來進行矯正。
所以有時候大家問小車精度有多高?其實現在這樣已經精度比較高了,難免打滑等問題,不可能做到百分之百的精準。
小車在距離和角度方面做到現在這樣對於自建地圖導航已經是可以接受的,要提高更高的精度可能就要其他設備輔助,比如激光雷達來進行輔助,激光雷達可以進行二次檢測進行糾正。
激光雷達數據的存儲格式,它首先會有一個大小范圍,如果超出范圍是無效的。還有就是有幾個采樣點,這樣就可以激光雷達可以告訴你隔多少度有一個采樣點。
另外最後那個Intensities是告訴大家數據的准確率,因為激光雷達也是取最高點的數據,是有一定的准確率的。上面的ppt其實就是用激光雷達掃了一個牆的形狀。
激光雷達掃出一個靜態形狀其實沒有意義,雷達建圖的意義其實在於建立房間的地圖。
如何繪制地圖?
第一步是收集眼睛數據:
針對激光雷達,ROS在sensor_msgs 包中定義了專用了數據結構來存儲激光消息的相關信息,成為LaserScan。
它指定了激光的有效范圍、掃描點采樣的角度及每個角度的測量值。激光雷達360度實時掃描,能實時測出障礙物的距離、形狀和實時變化。
第二步就是把眼睛看到的數據轉化為地圖:
ROS的gmapping把激光雷達的/scan數據轉換為柵格map數據,其中黑色代表障礙物、白色代表空白區域,可以順利通行、灰色 :未知領域。隨著機器人的移動,激光雷達可以在多個不同方位觀測同一個位置是否有障礙物,如果存在障礙物的閾值超過設置值是,就標定此處是存在障礙物;否則標定不存在障礙物。 把障礙物、空白區域和未知領域的尺寸用不同灰度表示出來,就是柵格地圖。便於下一步定位和導航。
有時候會出現很直的牆,機器人卻無法直著行走,這時的問題可能就是機器人的輪子出現打滑等其他問題,而走歪了,這時繪制出的地圖也可能是歪的。這種情況可以通過加一個陀螺儀來避免這個情況。因為激光雷達的特性,有時候遇到黑色或鏡面會導致測距不準。
目前的解決方法就是不用激光雷達,或者用激光雷達和超聲波進行輔助處理。
ROS的地圖是分多層的,我可以在不同高度放多台激光雷達來一起疊加,共同繪制一張地圖。地圖繪制結束之後,就可以進行定位和導航等工作。
如何定位和導航?
定位:其實是概率性的定位,而不是100%的精度。根據激光雷達掃描周圍障礙物的形狀,與地圖的形狀做匹配,判斷機器人所在位置的概率
機器人的定位是否成功,與地圖特徵有很大關系,如果區域特徵明顯,那麼機器人就很容易判斷自己的位置。如果出現難以定位的問題,可能需要人給指定初始位置,或者加led來進行位置識別,或者其他的定位設備來協助定位。
目前的視覺通過色彩或者光的技術越來越多。
導航:全局路徑規劃+局部調整(動態避障)
導航其實就是全局定位,首先根據現有地圖進行規劃,但是在運行過程中會進行局部的路線規劃。但是總體還是根據全局路徑來走。
導航中工作量還很大,比如掃地機的路徑規劃和服務機器人的路徑規劃是不一樣的,掃地機器人可能要全覆蓋的有牆角的地圖,而服務機器人主要圍繞指定的路徑或者最短路徑來進行規劃,這部分是ROS工作量最大的一塊。
路徑規劃根據不同應用場景變化比較大,但是ROS提供基礎的路徑規劃的開發包,在這個基礎上我們會做自己的路徑規劃。
機器人描述和坐標系變換
在導航時,哪些區域可以通過,取決於機器人形狀等信息,ROS通過URDF(UnifiedRobot Description Format) 就是描述機器人硬體尺寸布局,比如輪子的位置、底盤大小、激光雷達安裝位置,這些都會影響到坐標系的轉換。
坐標系遵循的前提是每個幀只能有一個父幀,再往上進行一些眼神或者關聯。
激光雷達的安裝位置直接影響/scan輸出數據。所以激光雷達和機器人的相對位置是需要做坐標變換,才能把激光雷達的數據轉化為機器人視角的數據。
ROS的坐標系,最終歸結為三個標准框架,可以簡化許多常見的機器人問題:
1)全局准確,但局部不連續的幀(』map」)
2)全局不準確,但局部光滑框架(』odom」)
3)機器人自身框架(』base_link」)
多種感測器(像激光雷達、深度攝像頭和陀螺儀加速度計等)都可以計算base_link和odom的坐標關系,但由於「每個幀只能有一個父幀」,所以只能有一個節點(比如 robot_pose_ekf 融合多感測器)發布base_link和odom的坐標關系。
Base link自身的坐標系,因為不同元件裝在機器人上不同位置,都要對應到base link的坐標系中,因為所有的感測器都是要通過機器人的視角來「看」。
有些朋友問我,激光雷達在建地圖的時候,小車移動後地圖就亂了,這是因為小車的底盤坐標系和激光雷達的坐標系沒有標定準確。
map和odom之間的關聯
因為小車移動需要一個局部聯系,比如小車在向前走,不停的累加,這是里程計的作用,map起到全局的、不連續的作用,經過激光雷達和map對應。
如果要學習ROS的話,坐標系的變化是重要的點。坐標系的變換還有一個點,就是每個幀都只有一個父幀,有時候兩個坐標都和它有關聯的話,就是A和B關聯,B再和C關聯,而不是B/C都和A關聯。
三個坐標幀的父子關系如下:
map –> odom –> base_link
其實, map和odom都應該和base_link關聯,但為了遵守「每個幀只能有一個父幀」的原則,根據map和base_link 以及 odom->base_link的關系,計算出map與odom的坐標關系並發布。
odom->base_link的坐標關系是由里程計節點計算並發布的。
map -> base_link的坐標關系是由定位節點計算出來,但並不發布,而是利用接收odom->base_link的坐標關系,計算出map->odom的坐標關系,然後發布。
只有里程計的時候,沒有激光雷達,也可以跑,但是要先根據預設地圖進行簡單避障。
精彩問答
Q:還有ROS的實時性有什麼改進進展嗎 ?
A:實時改進要看ROS2.0的設計,其實ROS2.0的進展網上有公開。但是實際上他的進展離實際應用還有一定距離,至少今年下半年還達不到穩定,不過可以去研究下他的代碼,他對內存管理,線程管理,在實時性上有了很大改善。
Q:vSLAM對內存和CPU要求頗高。實際工程中,李老師使用的是什麼硬體配置?可以做多大的地圖呢?
A:確實如此,目前來說我們還是使用激光雷達和感測器輔助來進行,這個和地圖大小沒有太大關系,主要是與地形障礙物復雜程度有關。