㈠ C#和java有很大的區別嗎
c#和Java是兩種編輯語言,應該除了都是編程語言外沒有什麼相同點。
Java比較廣泛些是因為它的移植性比較好些。
都是面像對像的編程語言,區別也很大喲,一句兩句也說不清楚,C#的開發工具要好一些,可以用.net,java的開發工具就沒有那麼可視了。
.屬性:
java中定義和訪問均要用get和set方法,可以不成對出現。
c#中是真正的屬性,定義時get和set必須同時出現,房問時用.號即可。不用get,set
2.對象索引
就是對象數組
public Story this [int index] {
3.C#中,不用任何范圍修飾符時,默認的是protect,因而不能在類外被訪問.
4.因為JAVA規定,在一個文件中只能有一個public類,而且這個類的名稱必須與文件名一模一樣,這是一個區別
5.在C#中,它是以Main方法來定位入口的.如果一個程序中沒有一個名為Main的方法,就會出"找不到入口的錯誤".不要把Main寫成main喲
6.C#預定義的簡單數據類型比Java多。例如,C#有unit,即無符號整數
7.忘掉Java中的static final修飾符。在C#中,常量可以用const關鍵詞聲明
C#的設計者還增加了readonly關鍵詞,readonly域只能通過初始化器或類的構造函數設置
8.公用類的入口點:c#是可以對Main進行重載(java中是main),允許有int返回值和空參數的Main
9.在Java中,switch語句只能處理整數。但C#中的switch語句不同,它還能夠處理字元變數。請考慮下面用switch語句處理字元串變數的C#代碼
10.C#沒有>>>移位操作符
11.goto關鍵詞:
Java不用goto關鍵詞。在C#中,goto允許你轉到指定的標簽。不過,C#以特別謹慎的態度對待goto,比如它不允許goto轉入到語句塊的內部。在Java中,你可以用帶標簽的語句加上break或continue取代C#中的goto。
12.int[] x = { 0, 1, 2, 3 };
int x[] = { 0, 1, 2, 3 };
但在C#中,只有第一行代碼合法,[]不能放到變數名字之後。
13.與Java不同的是,C#允許為名稱空間或者名稱空間中的類指定別名:
using TheConsole = System.Console;
14.在Java中,包的名字同時也是實際存在的實體,它決定了放置.java文件的目錄結構。在C#中,物理的包和邏輯的名稱之間是完全分離的
.NET中包的實體稱為程序集(Assembly)。每一個程序集包含一個manifest結構。manifest列舉程序集所包含的文件,控制哪些類型和資源被顯露到程序集之外,並把對這些類型和資源的引用映射到包含這些類型與資源的文件。程序集是自包含的,一個程序集可以放置到單一的文件之內,也可以分割成多個文件。.NET的這種封裝機制解決了DLL文件所面臨的問題,即臭名昭著的DLL Hell問題。
15.在Java中,java.lang包是默認的包,C#中不存在默認的包
16.C#中的訪問修飾符與Java中的基本對應,但多出了一個internal。簡而言之,C#有5種類型的可訪問性,如下所示:
public:成員可以從任何代碼訪問。
protected:成員只能從派生類訪問。
internal:成員只能從同一程序集的內部訪問。
protected internal:成員只能從同一程序集內的派生類訪問。
private:成員只能在當前類的內部訪問。
17.由於C#中不存在final關鍵詞,如果想要某個類不再被派生,你可以使用sealed關鍵詞
18.與Java不同,C#中的介面不能包含域(Field)。
另外還要注意,在C#中,介面內的所有方法默認都是公用方法。在Java中,方法聲明可以帶有public修飾符(即使這並非必要),但在C#中,顯式為介面的方法指定public修飾符是非法的。例如,下面的C#介面將產生一個編譯錯誤。
19.C#中的is操作符與Java中的instanceof操作符一樣,兩者都可以用來測試某個對象的實例是否屬於特定的類型。在Java中沒有與C#中的as操作符等價的操作符。as操作符與is操作符非常相似,但它更富有「進取心」:如果類型正確的話,as操作符會嘗試把被測試的對象引用轉換成目標類型;否則,它把變數引用設置成null。
20.C#仍舊保留了C++的內存手工管理方法,它適合在速度極端重要的場合使用,而在Java中這是不允許的
21.在C#中,所有的異常都從一個名為Exception的類派生
22.枚舉器即enum類型(java無),把它作為一個變數值的類型使用,從而把變數可能的取值范圍限制為枚舉器中出現的值。
23.結構(Struct)與類很相似,而結構是一種值類型,它存儲在棧中或者是嵌入式的,結構可以實現介面,可以象類一樣擁有成員,但結構不支持繼承
24.屬性聲明語法的第一部分與域聲明很相似,第二部分包括一個set過程和/或一個get過程
25.傳值方式:
在java中簡單數據類型的值傳參時,都以傳值方式;
在c#中如果加ref則會以引用的方式傳值(方法內部改變該參數,則外部變數一起跟著變);
加out與ref基本相同,但out不要求參數一定要初始化.
26.c#保留了指針。unsafe
27.代理:代理(delegate)可以看作C++或者其他語言中的函數指針
代理用來封裝可調用方法。你可以在類裡面編寫方法並在該方法上創建代理,此後這個代理就可以被傳遞到第二個方法。這樣,第二個方法就可以調用第一個方法。
代理是從公共基類System.Delegate派生的引用類型。定義和使用代理包括三個步驟:聲明,創建實例,調用。代理用delegate聲明語法聲明。
☆嶝峯簉極_` 回答採納率:23.5% 2008-12-13 20:34
java 比 C# 安全性高 移植性
瑪奇朵`` 回答採納率:40.0% 2008-12-13 22:55
共同點:都是面向對象編程語言!都可以一次編譯到處運行
不同點:java是跨平台的語言,用(Java 虛擬機器)實現跨平台的
C#只是.NET的一個分支,是跨語言的。意思就是不管是什麼系統C#的代碼直接轉換為微軟的
中間語言(MSIL)!
㈡ java 雙緩沖,消除閃爍 的問題
[轉]雙緩沖在畫板程序中的應用
1.用雙緩沖解決畫板程序中的刷新問題
我們用Java編制畫板程序的時候,總是存在一個刷新的問題:當Canvas所在的窗口最小化或者被其他應用程序遮擋後,再次恢復,Canvas上的圖形
數據將被部分或者完全擦除掉.
通常解決這個問題的方法是在Canvas的paint()函數中重繪圖形,但是由於在繪圖的過程中產生了大量的數據,重新在Canvas上繪制這些數據將導
致大量的系統開銷,還會產生閃爍,故該方法可行但並不可取.
利用雙緩沖技術可以很好的解決這個問題,其主要原理是開辟兩個圖形緩沖區,一個是前台的顯示緩沖(也就是Canvas),一個是後台的圖形緩沖(
通常是Image).用戶在繪制圖形時,我們對這兩個緩沖區進行同步更新,相當於為前台的數據作了一個後台備份.當前台的圖形被遮蓋需要恢復的
時候,我們就可以用這個後台備份來恢復,具體方法是重寫paint()函數,將備份好的圖像一次性的畫到屏幕上去.
為什麼是paint()?這里需要先了解一下有關Java處理AWT繪圖的基礎知識:Java的顯示更新是由一個AWT線程來控制完成的.該線程主要負責兩種
與顯示更新相關的情況.第一種情況稱為曝光,表示部分顯示區域毀壞或需要清除.這種情況發生時,系統直接調用paint()方法;第二種情況是程
序決定重畫顯示區域,添加一些新的內容,此時需要程序調用成員的repaint()方法,repaint()方法調用成員的update(),update()再調用paint()
方法.顯然我們所說的就是第一種.只要Canvas組件所在的窗口最小化或者被其他應用程序遮擋住,系統就會調用paint()對畫布進行重繪.如果我
們在paint()方法中什麼都不做,就只能眼睜睜的看著辛辛苦苦畫的線條一旦被覆蓋就再也看不見了.
作為起點,請先看一個最簡單的畫板程序,請注意,以下程序使用的是j2sdk1.4.1版本,在Win98的IE下(不是Tencent Explorer)全部測試通過:
//:WBApplet.java
import java.applet.*;
public class WBApplet extends Applet{
final static int DEFAULT_BOARDWIDTH=700;
final static int DEFAULT_BOARDHEIGHT=400;
public void init(){
super.init();
setLayout(null);
whiteBoard = new WhiteBoard(this);
whiteBoard.reshape(0,0,DEFAULT_BOARDWIDTH,DEFAULT_BOARDHEIGHT);
add(whiteBoard);
}
WhiteBoard whiteBoard;
}
///:~
//:WhiteBoard.java
java.awt.*;
import java.awt.event.*;
public class WhiteBoard extends Canvas implements MouseMotionListener,MouseListener{
final static int DEFAULT_BOARDWIDTH=700;
final static int DEFAULT_BOARDHEIGHT=400;
int x0,y0,x1,y1;
WhiteBoard(WBApplet WBApplet1){
parent = WBApplet1;
addMouseMotionListener(this);
addMouseListener(this);
}
synchronized public void update_buffer(Graphics g,DrawItem data) {
g.drawLine(data.x0,data.y0,data.x1,data.y1);
}
public void mouseReleased(MouseEvent e){}
public void mouseEntered(MouseEvent e){}
public void mouseExited(MouseEvent e){}
public void mouseClicked(MouseEvent e){}
public void mouseMoved(MouseEvent e){}
public void mouseDragged(MouseEvent e){
x1=e.getX();
y1=e.getY();
Graphics g = getGraphics();
update_buffer(g,new DrawItem(x0,y0,x1,y1));
g.dispose();
x0=x1;
y0=y1;
}
public void mousePressed(MouseEvent e){
x0 =e.getX();
y0 =e.getY();
}
WBApplet parent;
}
class DrawItem{
DrawItem(int x0,int y0,int x1,int y1){
this.x0=x0;
this.y0=y0;
this.x1=x1;
this.y1=y1;
}
int x0;
int y0;
int x1;
int y1;
}
///:~
我們將白板需完成的所有邏輯操作封裝在了一個WhiteBoard類中,以方便主程序的Applet調用.同時,定義了一個繪圖的數據類DrawItem,用來封
裝圖形數據.繪圖的操作都寫在update_buffer中.顯然,這個程序無法實現刷新後的恢復,我們需要使用雙緩沖技術.
為了實現雙緩沖,首先定義圖形緩沖區如下
private Image off_screen_buf;
private Graphics off_screen_gc;
並在WhiteBoard類的構造函數中對其進行初始化
off_screen_buf =parent.createImage(DEFAULT_BOARDWIDTH,DEFAULT_BOARDHEIGHT);
off_screen_gc = off_screen_buf.getGraphics();
在處理用戶繪制圖形的函數中,我們使用update_buffer對顯示緩沖和圖形緩沖同時進行更新
Graphics g = getGraphics();
update_buffer(g,new DrawItem(x0,y0,x1,y1));//前台更新畫布
update_buffer(off_screen_gc,new DrawItem(x0,y0,x1,y1));//後台更新緩沖
g.dispose();
顯然,後台的更新操作是不可視的,所以是off-screen.
最後,重寫paint()方法,調用_from_offscreen_buf(g)將圖形緩沖區的圖像畫到屏幕上去.
public void paint(Graphics g){
_from_offscreen_buf(g);
}
void _from_offscreen_buf(Graphics g){
if(g != null)
g.drawImage(off_screen_buf, 0, 0, null);
}
就是這么簡單的幾行代碼,就可以讓我們完全的避免圖形不能恢復的問題.下面是WhiteBoard經改進後的完整代碼.
//:WhiteBoard.java
import java.awt.*;
import java.awt.event.*;
public class WhiteBoard extends Canvas implements MouseMotionListener,MouseListener{
final static int DEFAULT_BOARDWIDTH=700;
final static int DEFAULT_BOARDHEIGHT=400;
int x0,y0,x1,y1;
WhiteBoard(WBApplet WBApplet1){
parent = WBApplet1;
off_screen_buf =parent.createImage(DEFAULT_BOARDWIDTH,DEFAULT_BOARDHEIGHT);
off_screen_gc = off_screen_buf.getGraphics();
addMouseMotionListener(this);
addMouseListener(this);
}
synchronized public void update_buffer(Graphics g,DrawItem data) {
g.drawLine(data.x0,data.y0,data.x1,data.y1);
}
public void mouseMoved(MouseEvent e){}
public void mouseReleased(MouseEvent e){}
public void mouseEntered(MouseEvent e){}
public void mouseExited(MouseEvent e){}
public void mouseClicked(MouseEvent e){}
public void mouseDragged(MouseEvent e){
x1=e.getX();
y1=e.getY();
Graphics g = getGraphics();
update_buffer(g,new DrawItem(x0,y0,x1,y1));
update_buffer(off_screen_gc,new DrawItem(x0,y0,x1,y1));
g.dispose();
x0=x1;
y0=y1;
}
public void mousePressed(MouseEvent e){
x0 =e.getX();
y0 =e.getY();
}
public void paint(Graphics g){
_from_offscreen_buf(g);//把這句話屏蔽掉,就不能恢復用戶繪制的圖形了
}
void _from_offscreen_buf(Graphics g){
if(g != null)
g.drawImage(off_screen_buf, 0, 0, null);
}
private Image off_screen_buf;
private Graphics off_screen_gc;
WBApplet parent;
}
class DrawItem{
DrawItem(int x0,int y0,int x1,int y1){
this.x0=x0;
this.y0=y0;
this.x1=x1;
this.y1=y1;
}
int x0;
int y0;
int x1;
int y1;
}
///:~
運行一下,看是不是不一樣了.這一次你想讓你畫的東西消失都不可能了.為了將這個原理說清楚,以上的代碼我都沒有編寫的太復雜,下一次我們
會創建更加復雜,更加完善的畫板程序.
2.用雙緩沖實現各種圖形的繪制
在一個畫板程序中,用戶應該能夠用畫筆繪制各種圖形,除了上一節實現的自由畫法(Freehand)外,還應該可以畫直線,長方體,橢圓等等.以繪制
直線為例,我們都知道,只有在松開滑鼠鍵之後,直線才實實在在的顯示在了畫布上,而在拖拽滑鼠的過程中,直線在畫布中的顯示是隨著滑鼠的箭
頭方位的變化而不斷更新的.體現在程序中,這是一個不斷擦除,顯示,再擦除,再顯示的過程.擦除的是箭頭上一個點和起點間的直線,顯示的是箭
頭當前點和起點間的的直線.這個顯示的過程由update_buffer負責,而這個擦除的工作則和上一節出理刷新一樣,由_from_offscreen_buf來
完成.實際上,所謂擦除,也就是將畫板恢復到某一個原來的時刻.
這一個過程在下面一個修改後的拖拽操作的處理程序中完成:
public void mouseDragged(MouseEvent e){
Graphics g = getGraphics();
_from_offscreen_buf(g);
x1=e.getX();
y1=e.getY();
update_buffer(g,new DrawItem(x0,y0,x1,y1));
g.dispose();
}
注意,在該方法中,我們沒有對後台緩沖進行更新,這是因為滑鼠在拖拽的時候,雖然畫板上會顯示線條,但是這條直線並沒有真正的畫下去.那麼
在什麼時候應該對後台緩沖更新呢?顯然,是在滑鼠松開的時候.我們需要在mouseReleased方法中做這個工作.
public void mouseReleased(MouseEvent e){
Graphics g = getGraphics();
_from_offscreen_buf(g);
x1=e.getX();
y1=e.getY();
update_buffer(g,new DrawItem(x0,y0,x1,y1));
update_buffer(off_screen_gc,new DrawItem(x0,y0,x1,y1));
g.dispose();
}
可以看到,只有在滑鼠松開的時候,畫到畫板上的直線才最後確定了,我們才能夠將這一條線備份到緩沖區裡面去.
下面是升級後的完整的WhiteBoard.java程序.
//:WhiteBoard.java
import java.awt.*;
import java.awt.event.*;
public class WhiteBoard extends Canvas implements MouseMotionListener,MouseListener{
final static int DEFAULT_BOARDWIDTH=700;
final static int DEFAULT_BOARDHEIGHT=400;
int x0,y0,x1,y1;
WhiteBoard(WBApplet WBApplet1){
parent = WBApplet1;
off_screen_buf =parent.createImage(DEFAULT_BOARDWIDTH,DEFAULT_BOARDHEIGHT);
off_screen_gc = off_screen_buf.getGraphics();
addMouseMotionListener(this);
addMouseListener(this);
draw_mode=2;
}
synchronized public void update_buffer(Graphics g,DrawItem data) {
g.drawLine(data.x0,data.y0,data.x1,data.y1);
}
public void mouseMoved(MouseEvent e){}
public void mouseReleased(MouseEvent e){
switch(draw_mode){
case 2:
Graphics g = getGraphics();
_from_offscreen_buf(g);
x1=e.getX();
y1=e.getY();
update_buffer(g,new DrawItem(x0,y0,x1,y1));
update_buffer(off_screen_gc,new DrawItem(x0,y0,x1,y1));
g.dispose();
}
}
public void mouseEntered(MouseEvent e){}
public void mouseExited(MouseEvent e){}
public void mouseClicked(MouseEvent e){}
public void mouseDragged(MouseEvent e){
switch(draw_mode){
case 1:
x1=e.getX();
y1=e.getY();
Graphics g = getGraphics();
update_buffer(g,new DrawItem(x0,y0,x1,y1));
update_buffer(off_screen_gc,new DrawItem(x0,y0,x1,y1));
g.dispose();
x0=x1;
y0=y1;
break;
case 2:
Graphics g1 = getGraphics();
_from_offscreen_buf(g1);
x1=e.getX();
y1=e.getY();
update_buffer(g1,new DrawItem(x0,y0,x1,y1));
g1.dispose();
}
}
public void mousePressed(MouseEvent e){
x0 =e.getX();
y0 =e.getY();
}
public void paint(Graphics g){
_from_offscreen_buf(g);
}
void _from_offscreen_buf(Graphics g){
if(g != null)
g.drawImage(off_screen_buf, 0, 0, null);
}
private int draw_mode;
private Image off_screen_buf;
private Graphics off_screen_gc;
WBApplet parent;
}
class DrawItem{
DrawItem(int x0,int y0,int x1,int y1){
this.x0=x0;
this.y0=y0;
this.x1=x1;
this.y1=y1;
}
int x0;
int y0;
int x1;
int y1;
}
///:~
注意到,在這個程序裡面我們創建了一個新的私有變數draw_mode,用來存儲繪圖模式的代號.在這里,我們使用1來代表自由繪畫,2來代表畫直線.
在構造函數中為draw_mode定義初值可以使我們對不同種類圖形繪制的調試很方便,在上面的程序中,我們定義的是2,如果賦值為1,則又回到自由
繪畫的模式.事實上,我們應該在這樣的一個框架上把程序不斷的擴充和完善.